On the S-fundamental group scheme
- [1] Warsaw University Institute of Mathematics Banacha 2, 02-097 Warszawa (Poland) Polish Academy of Sciences Institute of Mathematics Sniadeckich 8, 00-956 Warszawa (Poland)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2077-2119
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLanger, Adrian. "On the S-fundamental group scheme." Annales de l’institut Fourier 61.5 (2011): 2077-2119. <http://eudml.org/doc/219856>.
@article{Langer2011,
abstract = {We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.},
affiliation = {Warsaw University Institute of Mathematics Banacha 2, 02-097 Warszawa (Poland) Polish Academy of Sciences Institute of Mathematics Sniadeckich 8, 00-956 Warszawa (Poland)},
author = {Langer, Adrian},
journal = {Annales de l’institut Fourier},
keywords = {Fundamental group; positive characteristic; numerically flat bundles; Lefschetz type theorems; fundamental group},
language = {eng},
number = {5},
pages = {2077-2119},
publisher = {Association des Annales de l’institut Fourier},
title = {On the S-fundamental group scheme},
url = {http://eudml.org/doc/219856},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Langer, Adrian
TI - On the S-fundamental group scheme
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2077
EP - 2119
AB - We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.
LA - eng
KW - Fundamental group; positive characteristic; numerically flat bundles; Lefschetz type theorems; fundamental group
UR - http://eudml.org/doc/219856
ER -
References
top- V. Balaji, A. J. Parameswaran, An analogue of the Narasimhan-Seshadri theorem and some application, (2009) Zbl1221.14049
- C. Barton, Tensor products of ample vector bundles in characteristic , Amer. J. Math. 93 (1971), 429-438 Zbl0221.14011MR289525
- I. Biswas, Y. Holla, Comparison of fundamental group schemes of a projective variety and an ample hypersurface, J. Algebraic Geom. 16 (2007), 547-597 Zbl1120.14038MR2306280
- I. Biswas, A. J. Parameswaran, S. Subramanian, Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006), 1-48 Zbl1106.14032MR2219253
- I. Biswas, S. Subramanian, Numerically flat principal bundles, Tohoku Math. J. (2) 57 (2005), 53-63 Zbl1072.32010MR2113990
- H. Brenner, There is no Bogomolov type restriction theorem for strong semistability in positive characteristic, Proc. Amer. Math. Soc. 133 (2005), 1941-1947 Zbl1083.14050MR2137859
- H. Brenner, A. Kaid, On deep Frobenius descent and flat bundles, Math. Res. Lett. 15 (2008), 1101-1115 Zbl1200.14061MR2470387
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) 16 (1989), 79-297, Springer, New York Zbl0742.14022MR1012168
- P. Deligne, L. Illusie, Relèvements modulo et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270 Zbl0632.14017MR894379
- P. Deligne, J. S. Milne, Tannakian categories, 900 (1982), Springer-Verlag, Berlin Zbl0477.14004
- Groupes de monodromie en géométrie algébrique. II, (1973), Springer-Verlag, Berlin
- J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
- S. Diaz, D. Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991), 73-86 Zbl0744.14004MR986689
- W. Fulton, Intersection theory, 2 (1984), Springer-Verlag, Berlin Zbl0885.14002MR732620
- W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. of Math. (2) 118 (1983), 35-60 Zbl0537.14009MR707160
- D. Gieseker, Stable vector bundles and the Frobenius morphism, Ann. Sci. École Norm. Sup. (4) 6 (1973), 95-101 Zbl0281.14013MR325616
- D. Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 1-31 Zbl0322.14009MR382271
- A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), (2005), Société Mathématique de France, Paris Zbl0197.47202MR2171939
- R. Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
- S. Ishimura, A descent problem of vector bundles and its applications, J. Math. Kyoto Univ. 23 (1983), 73-83 Zbl0523.14017MR692730
- J. C. Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
- J. Kollár, Rational curves on algebraic varieties, 32 (1996), Springer-Verlag, Berlin Zbl0877.14012MR1440180
- A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), 251-276 Zbl1080.14014MR2051393
- A. Langer, Semistable principal -bundles in positive characteristic, Duke Math. J. 128 (2005), 511-540 Zbl1081.14018MR2145742
- A. Langer, Moduli spaces of sheaves and principal -bundles, Algebraic geometry—Seattle 2005. Part 1 80 (2009), 273-308, Amer. Math. Soc., Providence, RI Zbl1179.14010MR2483939
- L. Manivel, Vanishing theorems for ample vector bundles, Invent. Math. 127 (1997), 401-416 Zbl0906.14011MR1427625
- V. B. Mehta, Some remarks on the local fundamental group scheme and the big fundamental group scheme, preprint (2008) Zbl1157.14006MR2423233
- V. B. Mehta, M. V. Nori, Semistable sheaves on homogeneous spaces and abelian varieties, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 1-12 Zbl0592.14017MR796768
- V. B. Mehta, A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), 163-172 Zbl0525.55012MR751136
- V. B. Mehta, S. Subramanian, On the fundamental group scheme, Invent. Math. 148 (2002), 143-150 Zbl1020.14006MR1892846
- M. V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73-122 Zbl0586.14006MR682517
- C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser Boston, Mass. Zbl0438.32016MR561910
- C. Pauly, A smooth counterexample to Nori’s conjecture on the fundamental group scheme, Proc. Amer. Math. Soc. 135 (2007), 2707-2711 (electronic) Zbl1115.14026MR2317943
- S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. (2) 36 (1984), 269-291 Zbl0567.14027MR742599
- J. P. P. dos Santos, Fundamental group schemes for stratified sheaves, J. Algebra 317 (2007), 691-713 Zbl1130.14032MR2362937
- A. Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), 509-656 Zbl0984.14009MR1800845
- C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95 Zbl0814.32003MR1179076
- L. Szpiro, Sur le théorème de rigidité de Parsin et Arakelov, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II 64 (1979), 169-202, Soc. Math. France, Paris MR563470
- Jarosław Włodarczyk, Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), 223-331 Zbl1130.14014MR2013783
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.