On the S-fundamental group scheme

Adrian Langer[1]

  • [1] Warsaw University Institute of Mathematics Banacha 2, 02-097 Warszawa (Poland) Polish Academy of Sciences Institute of Mathematics Sniadeckich 8, 00-956 Warszawa (Poland)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 2077-2119
  • ISSN: 0373-0956

Abstract

top
We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.

How to cite

top

Langer, Adrian. "On the S-fundamental group scheme." Annales de l’institut Fourier 61.5 (2011): 2077-2119. <http://eudml.org/doc/219856>.

@article{Langer2011,
abstract = {We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.},
affiliation = {Warsaw University Institute of Mathematics Banacha 2, 02-097 Warszawa (Poland) Polish Academy of Sciences Institute of Mathematics Sniadeckich 8, 00-956 Warszawa (Poland)},
author = {Langer, Adrian},
journal = {Annales de l’institut Fourier},
keywords = {Fundamental group; positive characteristic; numerically flat bundles; Lefschetz type theorems; fundamental group},
language = {eng},
number = {5},
pages = {2077-2119},
publisher = {Association des Annales de l’institut Fourier},
title = {On the S-fundamental group scheme},
url = {http://eudml.org/doc/219856},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Langer, Adrian
TI - On the S-fundamental group scheme
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2077
EP - 2119
AB - We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.
LA - eng
KW - Fundamental group; positive characteristic; numerically flat bundles; Lefschetz type theorems; fundamental group
UR - http://eudml.org/doc/219856
ER -

References

top
  1. V. Balaji, A. J. Parameswaran, An analogue of the Narasimhan-Seshadri theorem and some application, (2009) Zbl1221.14049
  2. C. Barton, Tensor products of ample vector bundles in characteristic p , Amer. J. Math. 93 (1971), 429-438 Zbl0221.14011MR289525
  3. I. Biswas, Y. Holla, Comparison of fundamental group schemes of a projective variety and an ample hypersurface, J. Algebraic Geom. 16 (2007), 547-597 Zbl1120.14038MR2306280
  4. I. Biswas, A. J. Parameswaran, S. Subramanian, Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006), 1-48 Zbl1106.14032MR2219253
  5. I. Biswas, S. Subramanian, Numerically flat principal bundles, Tohoku Math. J. (2) 57 (2005), 53-63 Zbl1072.32010MR2113990
  6. H. Brenner, There is no Bogomolov type restriction theorem for strong semistability in positive characteristic, Proc. Amer. Math. Soc. 133 (2005), 1941-1947 Zbl1083.14050MR2137859
  7. H. Brenner, A. Kaid, On deep Frobenius descent and flat bundles, Math. Res. Lett. 15 (2008), 1101-1115 Zbl1200.14061MR2470387
  8. P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) 16 (1989), 79-297, Springer, New York Zbl0742.14022MR1012168
  9. P. Deligne, L. Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270 Zbl0632.14017MR894379
  10. P. Deligne, J. S. Milne, Tannakian categories, 900 (1982), Springer-Verlag, Berlin Zbl0477.14004
  11. Groupes de monodromie en géométrie algébrique. II, (1973), Springer-Verlag, Berlin 
  12. J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
  13. S. Diaz, D. Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991), 73-86 Zbl0744.14004MR986689
  14. W. Fulton, Intersection theory, 2 (1984), Springer-Verlag, Berlin Zbl0885.14002MR732620
  15. W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. of Math. (2) 118 (1983), 35-60 Zbl0537.14009MR707160
  16. D. Gieseker, Stable vector bundles and the Frobenius morphism, Ann. Sci. École Norm. Sup. (4) 6 (1973), 95-101 Zbl0281.14013MR325616
  17. D. Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 1-31 Zbl0322.14009MR382271
  18. A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), (2005), Société Mathématique de France, Paris Zbl0197.47202MR2171939
  19. R. Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  20. D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
  21. S. Ishimura, A descent problem of vector bundles and its applications, J. Math. Kyoto Univ. 23 (1983), 73-83 Zbl0523.14017MR692730
  22. J. C. Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
  23. J. Kollár, Rational curves on algebraic varieties, 32 (1996), Springer-Verlag, Berlin Zbl0877.14012MR1440180
  24. A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), 251-276 Zbl1080.14014MR2051393
  25. A. Langer, Semistable principal G -bundles in positive characteristic, Duke Math. J. 128 (2005), 511-540 Zbl1081.14018MR2145742
  26. A. Langer, Moduli spaces of sheaves and principal G -bundles, Algebraic geometry—Seattle 2005. Part 1 80 (2009), 273-308, Amer. Math. Soc., Providence, RI Zbl1179.14010MR2483939
  27. L. Manivel, Vanishing theorems for ample vector bundles, Invent. Math. 127 (1997), 401-416 Zbl0906.14011MR1427625
  28. V. B. Mehta, Some remarks on the local fundamental group scheme and the big fundamental group scheme, preprint (2008) Zbl1157.14006MR2423233
  29. V. B. Mehta, M. V. Nori, Semistable sheaves on homogeneous spaces and abelian varieties, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 1-12 Zbl0592.14017MR796768
  30. V. B. Mehta, A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), 163-172 Zbl0525.55012MR751136
  31. V. B. Mehta, S. Subramanian, On the fundamental group scheme, Invent. Math. 148 (2002), 143-150 Zbl1020.14006MR1892846
  32. M. V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73-122 Zbl0586.14006MR682517
  33. C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser Boston, Mass. Zbl0438.32016MR561910
  34. C. Pauly, A smooth counterexample to Nori’s conjecture on the fundamental group scheme, Proc. Amer. Math. Soc. 135 (2007), 2707-2711 (electronic) Zbl1115.14026MR2317943
  35. S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. (2) 36 (1984), 269-291 Zbl0567.14027MR742599
  36. J. P. P. dos Santos, Fundamental group schemes for stratified sheaves, J. Algebra 317 (2007), 691-713 Zbl1130.14032MR2362937
  37. A. Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), 509-656 Zbl0984.14009MR1800845
  38. C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95 Zbl0814.32003MR1179076
  39. L. Szpiro, Sur le théorème de rigidité de Parsin et Arakelov, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II 64 (1979), 169-202, Soc. Math. France, Paris MR563470
  40. Jarosław Włodarczyk, Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), 223-331 Zbl1130.14014MR2013783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.