O ciałach uporządkowanych

Piotr Błaszczyk

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2012)

  • Volume: 4, page 15-30
  • ISSN: 2080-9751

Abstract

top
In this paper, we present some basic facts concerning ordered fields. We review definitions of an ordered field, give an example of a field that admits many orderings, and present equivalent definitions of the axiom of Archimedes and the continuity axiom. We show how to extend an ordered field by means of an ultrapower construction and formal power series.

How to cite

top

Piotr Błaszczyk. "O ciałach uporządkowanych." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 4 (2012): 15-30. <http://eudml.org/doc/296267>.

@article{PiotrBłaszczyk2012,
abstract = {In this paper, we present some basic facts concerning ordered fields. We review definitions of an ordered field, give an example of a field that admits many orderings, and present equivalent definitions of the axiom of Archimedes and the continuity axiom. We show how to extend an ordered field by means of an ultrapower construction and formal power series.},
author = {Piotr Błaszczyk},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {ordered fields; Archimedean field; non-Archimedean field; continuity; hyperreals},
language = {pol},
pages = {15-30},
title = {O ciałach uporządkowanych},
url = {http://eudml.org/doc/296267},
volume = {4},
year = {2012},
}

TY - JOUR
AU - Piotr Błaszczyk
TI - O ciałach uporządkowanych
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2012
VL - 4
SP - 15
EP - 30
AB - In this paper, we present some basic facts concerning ordered fields. We review definitions of an ordered field, give an example of a field that admits many orderings, and present equivalent definitions of the axiom of Archimedes and the continuity axiom. We show how to extend an ordered field by means of an ultrapower construction and formal power series.
LA - pol
KW - ordered fields; Archimedean field; non-Archimedean field; continuity; hyperreals
UR - http://eudml.org/doc/296267
ER -

References

top
  1. Adamowicz, Z., Zbierski, P.: 1990, Logika matematyczna, PWN, Warszawa. 
  2.  
  3. Artin, E., Schreier, O.: 1926, Algebraische Konstruktion reeller Körper, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität 5, 85-99. 
  4.  
  5. Błaszczyk, P.: 2007, Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Kraków. 
  6.  
  7. Błaszczyk, P.: 2012, Nota o Über den Zahlbegiff, Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia IV, 195-197. 
  8.  
  9. Bochnak, J., Coste, M., Roy, M.-F.: 1998, Real Algebraic Geometry, Berlin. 
  10.  
  11. Cohen, L. C., Ehrlich, G.: 1963, The Structure of the Real Number System, Toronto-New York-London. 
  12.  
  13. Conway, J.: 2001, On Numbers and Games, Massachusetts. 
  14.  
  15. Ehrlich, P.: 2012, The Absolute Arithmetic Continuum and the Unification of all Numbers Great and Small, Bulletin of Symbolic Logic 18(1), 1-45. 
  16.  
  17. Fichtenholtz, G. M.: 1985, Rachunek różniczkowy i całkowy, t. I, Warszawa. 
  18.  
  19. Goldblatt, R.: 1998, Lectures on the Hyperreals, New York. 
  20.  
  21. Hartshorne, R.: 2000, Geometry: Euclid and Beyond, New York. 
  22.  
  23. Hilbert, D.: 1899, Grundlagen der Geometrie, Festschrift zur Enthüllung des Gauss-Weber Denkmals in Göttingen, Leipzig, 1-92. 
  24.  
  25. Hilbert, D.: 2012, O pojęciu liczby, Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia IV, 199-202. Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung 8, 1900, 180-184; tł. J. Pogonowski. 
  26.  
  27. Hölder, O.: 1901, Die Axiome der Quantität und die Lehre vom Mass, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikaliche Classe (53), 1-64. 
  28.  
  29. Kuratowski, K.: 1971, Rachunek różniczkowy i całkowy, Warszawa. 
  30.  
  31. Kuratowski, K., Mastowski, A.: 1978, Teoria mnogości, Warszawa. 
  32.  
  33. Leja, F.: 1979, Rachunek różniczkowy i całkowy, PWN, Warszawa. 
  34.  
  35. Marker, D.: 2002, Model Theory: An Introduction, Springer, New York. 
  36.  
  37. Maurin, K.: 1991, Analiza, t. 1, PWN, Warszawa. 
  38.  
  39. Shamseddine, K., Berz, M.: 2010, Analysis on the Levi-Civita field, a brief overview, Contemporary Mathematics 508 (508), 215-237. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.