Uporządkowane struktury liczbowe

Antoni Chronowski

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2013)

  • Volume: 5, page 5-37
  • ISSN: 2080-9751

Abstract

top
In this article we consider the ordered algebraic structures of thesystems of natural numbers, integers, rational and real numbers. We presentthe ordered algebra of natural numbers, the ordered ring of integers, and theordered fields of rational and real numbers. The main problem considered forordered number structures is the categoricity of these systems determined bya suitable isomorphism. First of all, this article is addressed at Mathematicsstudents of pedagogical studies and at teachers of Mathematics.

How to cite

top

Antoni Chronowski. "Uporządkowane struktury liczbowe." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 5 (2013): 5-37. <http://eudml.org/doc/296378>.

@article{AntoniChronowski2013,
abstract = {In this article we consider the ordered algebraic structures of thesystems of natural numbers, integers, rational and real numbers. We presentthe ordered algebra of natural numbers, the ordered ring of integers, and theordered fields of rational and real numbers. The main problem considered forordered number structures is the categoricity of these systems determined bya suitable isomorphism. First of all, this article is addressed at Mathematicsstudents of pedagogical studies and at teachers of Mathematics.},
author = {Antoni Chronowski},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {ordered number systems; categoricity},
language = {pol},
pages = {5-37},
title = {Uporządkowane struktury liczbowe},
url = {http://eudml.org/doc/296378},
volume = {5},
year = {2013},
}

TY - JOUR
AU - Antoni Chronowski
TI - Uporządkowane struktury liczbowe
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2013
VL - 5
SP - 5
EP - 37
AB - In this article we consider the ordered algebraic structures of thesystems of natural numbers, integers, rational and real numbers. We presentthe ordered algebra of natural numbers, the ordered ring of integers, and theordered fields of rational and real numbers. The main problem considered forordered number structures is the categoricity of these systems determined bya suitable isomorphism. First of all, this article is addressed at Mathematicsstudents of pedagogical studies and at teachers of Mathematics.
LA - pol
KW - ordered number systems; categoricity
UR - http://eudml.org/doc/296378
ER -

References

top
  1. Błaszczyk, P.: 2012, O ciałach uporządkowanych, Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia IV, 15-30. 
  2. Chronowski, A.: 1999a, Podstawy arytmetyki szkolnej. Liczby naturalne i całkowite, cz. 1, Wydawnictwo Kleks, Bielsko-Biała. 
  3. Chronowski, A.: 1999b, Podstawy arytmetyki szkolnej. Liczby wymierne, rzeczywiste i zespolone, cz. 2, Wydawnictwo Kleks, Bielsko-Biała. 
  4. Cohen, L. C., Ehrlich, G.: 1963, The Structure of the Real Number System, Toronto-New York-London. 
  5. Guzicki, W., Zakrzewski, P.: 2005, Wykłady ze wstępu do matematyki. Wprowadzenie do teorii mnogości, Wydawnictwo Naukowe UAM, Poznań. 
  6. Hilbert, D.: 2012, O pojęciu liczby, Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia IV, 199-202. Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung 8, 1900, 180-184; tłum. J. Pogonowski. 
  7. Kurosz, A. G.: 1965, Algebra ogólna, PWN, Warszawa. 
  8. Murawski, R.: 2005, Filozofia matematyki. Zarys dziejów, Wydawnictwo Naukowe PWN, Warszawa. 
  9. Semadeni, Z.: 2002, Trojaka natura matematyki: idee głębokie, formy powierzchniowe, modele formalne, Roczniki Polskiego Towarzystwa Matematycznego, Seria V, Dydaktyka Matematyki 24, 41-92. 
  10. Semadeni, Z.: 2005, Idee głębokie struktur matematycznych określonych aksjomatycznie, Roczniki Polskiego Towarzystwa Matematycznego, Seria V, Dydaktyka Matematyki 28, 275-310. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.