Switched Stackelberg game analysis of false data injection attacks on networked control systems

Yabing Huang; Jun Zhao

Kybernetika (2020)

  • Volume: 56, Issue: 2, page 261-277
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.

How to cite

top

Huang, Yabing, and Zhao, Jun. "Switched Stackelberg game analysis of false data injection attacks on networked control systems." Kybernetika 56.2 (2020): 261-277. <http://eudml.org/doc/296939>.

@article{Huang2020,
abstract = {This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.},
author = {Huang, Yabing, Zhao, Jun},
journal = {Kybernetika},
keywords = {networked control systems; false data injection attacks; switched systems; switched Stackelberg games; switched Stackelberg equilibrium},
language = {eng},
number = {2},
pages = {261-277},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Switched Stackelberg game analysis of false data injection attacks on networked control systems},
url = {http://eudml.org/doc/296939},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Huang, Yabing
AU - Zhao, Jun
TI - Switched Stackelberg game analysis of false data injection attacks on networked control systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 261
EP - 277
AB - This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.
LA - eng
KW - networked control systems; false data injection attacks; switched systems; switched Stackelberg games; switched Stackelberg equilibrium
UR - http://eudml.org/doc/296939
ER -

References

top
  1. Basar, T., Olsder, G. J., 10.1137/1.9781611971132, Siam, Philadelphia 1999. MR1657965DOI10.1137/1.9781611971132
  2. Dong, Y., Chen, J., 10.1142/s0129183115500953, Int. J. Modern Phys. C. 26 (2015), 8, 1550095. MR3342134DOI10.1142/s0129183115500953
  3. Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Ind. Inf. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
  4. Engwerda, J., LQ Dynamic Optimization and Differential Games., John Wiley and Sons, Chichester 2005. 
  5. Garcia, E., Antsaklis, P., 10.1109/tac.2012.2211411, IEEE Trans. Automat. Control 58 (2013), 2, 422-434. MR3023933DOI10.1109/tac.2012.2211411
  6. Ge, X., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
  7. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
  8. Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F., 10.1109/tcyb.2019.2917179, IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320. DOI10.1109/tcyb.2019.2917179
  9. Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., 10.1016/j.automatica.2019.108557, Automatica 109 (2019), 108557, 108557. MR3998774DOI10.1016/j.automatica.2019.108557
  10. Hespanha, J. P., Morse, A. S., 10.1109/cdc.1999.831330, In: Proc. 38th IEEE Conf. Decision Control 1999, pp. 2655-2660. DOI10.1109/cdc.1999.831330
  11. Hu, L., Wang, Z., Han, Q.-L., Liu, X., 10.1016/j.automatica.2017.09.028, Automatica 87 (2018), 176-183. MR3733913DOI10.1016/j.automatica.2017.09.028
  12. Hu, S., Yue, D., Han, Q.-L., Xie, X., Chen, X., Dou, C., 10.1109/tcyb.2019.2903817, IEEE Trans. Cybernet. 50 (2019), 5, 1952-1964. MR3632431DOI10.1109/tcyb.2019.2903817
  13. Li, Y., Quevedo, D. E., Dey, S., Shi, L., 10.1109/tcns.2016.2549640, IEEE Trans. Control Netw. Syst. 4 (2017), 632-642. MR3704405DOI10.1109/tcns.2016.2549640
  14. Li, Y., Shi, D., Chen, T., 10.1109/tac.2018.2798817, IEEE Trans. Automat. Control 63 (2018), 3503-3509. MR3866256DOI10.1109/tac.2018.2798817
  15. Li, Y., Shi, L., Cheng, P., Chen, J., Quevedo, D. .E., 10.1109/tac.2015.2461851, IEEE Trans. Automat. Control 60 (2015), 2831-2836. MR3406006DOI10.1109/tac.2015.2461851
  16. Liberzon, D., 10.1007/978-1-4612-0017-8, Birkhauser, Boston 2003. Zbl1036.93001MR1987806DOI10.1007/978-1-4612-0017-8
  17. Liu, B., Hill, D. J., Sun, Z., 10.1016/j.amc.2018.01.002, Appl. Math. Comput. 326 (2018), 124-140. MR3759462DOI10.1016/j.amc.2018.01.002
  18. Liu, B., Hill, D. J., Sun, Z., 10.1002/rnc.3891, Int. J. Robust Nonlinear Control 28 (2018), 640-660. MR3747950DOI10.1002/rnc.3891
  19. Long, L., 10.1002/rnc.3832, Int. J. Robust Nonlinear Control 27 (2017), 4808-4824. MR3733698DOI10.1002/rnc.3832
  20. Long, L., 10.1109/tac.2017.2648740, IEEE Trans. Automat. Control 62 (2017), 3943-3958. MR3684329DOI10.1109/tac.2017.2648740
  21. Long, L., Si, T., 10.1109/tcyb.2018.2815714, IEEE Trans. Cybernet. 49 (2019), 1873-1884. DOI10.1109/tcyb.2018.2815714
  22. Rubio, S. J., 10.1007/s10957-005-7565-y, J. Optim. Theory Appl. 128 (2006), 203-220. MR2201896DOI10.1007/s10957-005-7565-y
  23. Sun, X.-M., Liu, G.-P., Rees, D., Wang, W., 10.1016/j.automatica.2008.04.006, Automatica 44 (2008), 2902-2908. MR2527214DOI10.1016/j.automatica.2008.04.006
  24. Sun, X.-M., Wang, W., 10.1016/j.automatica.2012.06.056, Automatica 48 (2012), 2359-2364. MR2956919DOI10.1016/j.automatica.2012.06.056
  25. Sun, X., Wu, D., Liu, G., Wang, W., 10.1109/tie.2013.2278953, IEEE Trans. Ind. Electron. 61 (2014), 3519-3526. DOI10.1109/tie.2013.2278953
  26. Sun, X.-M., Zhao, J., Hill, D. J., 10.1016/j.automatica.2006.05.007, Automatica 42 (2006), 1769-1774. MR2249722DOI10.1016/j.automatica.2006.05.007
  27. Wang, X., Lemmon, M., 10.1109/tac.2010.2057951, IEEE Trans. Automat. Control 56 (2011), 3, 586-601. MR2799075DOI10.1109/tac.2010.2057951
  28. Wu, J., Chen, T., 10.1109/tac.2007.900839, IEEE Trans. Automat. Control 52 (2007), 1314-1319. MR2332758DOI10.1109/tac.2007.900839
  29. Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/tcyb.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/tcyb.2019.2900478
  30. Xu, X., Antsaklis, P. J., 10.1109/tac.2003.821417, IEEE Trans. Automat. Control 49 (2004), 2-16. MR2028538DOI10.1109/tac.2003.821417
  31. You, K., Li, Z., Xie, L., 10.1016/j.automatica.2013.07.024, Automatica 49 (2013), 10, 3125-3132. MR3092665DOI10.1016/j.automatica.2013.07.024
  32. Zhang, L., Gao, H., Kaynak, O., 10.1109/tii.2012.2219540, IEEE Trans. Ind. Inf. 9 (2013), 1, 403-416. DOI10.1109/tii.2012.2219540
  33. Zhang, X.-M., Han, Q.-L., Yu, X., 10.1109/tii.2015.2506545, IEEE Trans. Ind. Inf. 12 (2016), 5, 1740-1752. MR3588201DOI10.1109/tii.2015.2506545
  34. Zhang, Y., Tian, Y.-P., 10.1016/j.automatica.2008.11.005, Automatica 45 (2009), 5, 1195-1201. MR2531593DOI10.1016/j.automatica.2008.11.005
  35. Zhao, J., Hill, D. J., 10.1109/tac.2008.920237, IEEE Trans. Automat. Control 53 (2008), 941-953. MR2419441DOI10.1109/tac.2008.920237
  36. Zhao, J., Hill, D. J., Liu, T., 10.1016/j.automatica.2011.09.012, Automatica 47 (2011), 2615-2625. MR2886930DOI10.1016/j.automatica.2011.09.012
  37. Zhu, M., Martínez, S., 10.1109/acc.2011.5991463, In: Proc. Amer. Control Conf. 2011, pp. 4063-4068. DOI10.1109/acc.2011.5991463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.