Switched Stackelberg game analysis of false data injection attacks on networked control systems
Kybernetika (2020)
- Volume: 56, Issue: 2, page 261-277
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHuang, Yabing, and Zhao, Jun. "Switched Stackelberg game analysis of false data injection attacks on networked control systems." Kybernetika 56.2 (2020): 261-277. <http://eudml.org/doc/296939>.
@article{Huang2020,
abstract = {This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.},
author = {Huang, Yabing, Zhao, Jun},
journal = {Kybernetika},
keywords = {networked control systems; false data injection attacks; switched systems; switched Stackelberg games; switched Stackelberg equilibrium},
language = {eng},
number = {2},
pages = {261-277},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Switched Stackelberg game analysis of false data injection attacks on networked control systems},
url = {http://eudml.org/doc/296939},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Huang, Yabing
AU - Zhao, Jun
TI - Switched Stackelberg game analysis of false data injection attacks on networked control systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 261
EP - 277
AB - This paper is concerned with a security problem for a discrete-time linear networked control system of switched dynamics. The control sequence generated by a remotely located controller is transmitted over a vulnerable communication network, where the control input may be corrupted by false data injection attacks launched by a malicious adversary. Two partially conflicted cost functions are constructed as the quantitative guidelines for both the controller and the attacker, after which a switched Stackelberg game framework is proposed to analyze the interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for the controller is derived subsequently, which, together with the corresponding best response of the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed if the switching signal exhibits a certain average dwell time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method in this paper.
LA - eng
KW - networked control systems; false data injection attacks; switched systems; switched Stackelberg games; switched Stackelberg equilibrium
UR - http://eudml.org/doc/296939
ER -
References
top- Basar, T., Olsder, G. J., 10.1137/1.9781611971132, Siam, Philadelphia 1999. MR1657965DOI10.1137/1.9781611971132
- Dong, Y., Chen, J., 10.1142/s0129183115500953, Int. J. Modern Phys. C. 26 (2015), 8, 1550095. MR3342134DOI10.1142/s0129183115500953
- Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Ind. Inf. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
- Engwerda, J., LQ Dynamic Optimization and Differential Games., John Wiley and Sons, Chichester 2005.
- Garcia, E., Antsaklis, P., 10.1109/tac.2012.2211411, IEEE Trans. Automat. Control 58 (2013), 2, 422-434. MR3023933DOI10.1109/tac.2012.2211411
- Ge, X., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
- Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F., 10.1109/tcyb.2019.2917179, IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320. DOI10.1109/tcyb.2019.2917179
- Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., 10.1016/j.automatica.2019.108557, Automatica 109 (2019), 108557, 108557. MR3998774DOI10.1016/j.automatica.2019.108557
- Hespanha, J. P., Morse, A. S., 10.1109/cdc.1999.831330, In: Proc. 38th IEEE Conf. Decision Control 1999, pp. 2655-2660. DOI10.1109/cdc.1999.831330
- Hu, L., Wang, Z., Han, Q.-L., Liu, X., 10.1016/j.automatica.2017.09.028, Automatica 87 (2018), 176-183. MR3733913DOI10.1016/j.automatica.2017.09.028
- Hu, S., Yue, D., Han, Q.-L., Xie, X., Chen, X., Dou, C., 10.1109/tcyb.2019.2903817, IEEE Trans. Cybernet. 50 (2019), 5, 1952-1964. MR3632431DOI10.1109/tcyb.2019.2903817
- Li, Y., Quevedo, D. E., Dey, S., Shi, L., 10.1109/tcns.2016.2549640, IEEE Trans. Control Netw. Syst. 4 (2017), 632-642. MR3704405DOI10.1109/tcns.2016.2549640
- Li, Y., Shi, D., Chen, T., 10.1109/tac.2018.2798817, IEEE Trans. Automat. Control 63 (2018), 3503-3509. MR3866256DOI10.1109/tac.2018.2798817
- Li, Y., Shi, L., Cheng, P., Chen, J., Quevedo, D. .E., 10.1109/tac.2015.2461851, IEEE Trans. Automat. Control 60 (2015), 2831-2836. MR3406006DOI10.1109/tac.2015.2461851
- Liberzon, D., 10.1007/978-1-4612-0017-8, Birkhauser, Boston 2003. Zbl1036.93001MR1987806DOI10.1007/978-1-4612-0017-8
- Liu, B., Hill, D. J., Sun, Z., 10.1016/j.amc.2018.01.002, Appl. Math. Comput. 326 (2018), 124-140. MR3759462DOI10.1016/j.amc.2018.01.002
- Liu, B., Hill, D. J., Sun, Z., 10.1002/rnc.3891, Int. J. Robust Nonlinear Control 28 (2018), 640-660. MR3747950DOI10.1002/rnc.3891
- Long, L., 10.1002/rnc.3832, Int. J. Robust Nonlinear Control 27 (2017), 4808-4824. MR3733698DOI10.1002/rnc.3832
- Long, L., 10.1109/tac.2017.2648740, IEEE Trans. Automat. Control 62 (2017), 3943-3958. MR3684329DOI10.1109/tac.2017.2648740
- Long, L., Si, T., 10.1109/tcyb.2018.2815714, IEEE Trans. Cybernet. 49 (2019), 1873-1884. DOI10.1109/tcyb.2018.2815714
- Rubio, S. J., 10.1007/s10957-005-7565-y, J. Optim. Theory Appl. 128 (2006), 203-220. MR2201896DOI10.1007/s10957-005-7565-y
- Sun, X.-M., Liu, G.-P., Rees, D., Wang, W., 10.1016/j.automatica.2008.04.006, Automatica 44 (2008), 2902-2908. MR2527214DOI10.1016/j.automatica.2008.04.006
- Sun, X.-M., Wang, W., 10.1016/j.automatica.2012.06.056, Automatica 48 (2012), 2359-2364. MR2956919DOI10.1016/j.automatica.2012.06.056
- Sun, X., Wu, D., Liu, G., Wang, W., 10.1109/tie.2013.2278953, IEEE Trans. Ind. Electron. 61 (2014), 3519-3526. DOI10.1109/tie.2013.2278953
- Sun, X.-M., Zhao, J., Hill, D. J., 10.1016/j.automatica.2006.05.007, Automatica 42 (2006), 1769-1774. MR2249722DOI10.1016/j.automatica.2006.05.007
- Wang, X., Lemmon, M., 10.1109/tac.2010.2057951, IEEE Trans. Automat. Control 56 (2011), 3, 586-601. MR2799075DOI10.1109/tac.2010.2057951
- Wu, J., Chen, T., 10.1109/tac.2007.900839, IEEE Trans. Automat. Control 52 (2007), 1314-1319. MR2332758DOI10.1109/tac.2007.900839
- Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/tcyb.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/tcyb.2019.2900478
- Xu, X., Antsaklis, P. J., 10.1109/tac.2003.821417, IEEE Trans. Automat. Control 49 (2004), 2-16. MR2028538DOI10.1109/tac.2003.821417
- You, K., Li, Z., Xie, L., 10.1016/j.automatica.2013.07.024, Automatica 49 (2013), 10, 3125-3132. MR3092665DOI10.1016/j.automatica.2013.07.024
- Zhang, L., Gao, H., Kaynak, O., 10.1109/tii.2012.2219540, IEEE Trans. Ind. Inf. 9 (2013), 1, 403-416. DOI10.1109/tii.2012.2219540
- Zhang, X.-M., Han, Q.-L., Yu, X., 10.1109/tii.2015.2506545, IEEE Trans. Ind. Inf. 12 (2016), 5, 1740-1752. MR3588201DOI10.1109/tii.2015.2506545
- Zhang, Y., Tian, Y.-P., 10.1016/j.automatica.2008.11.005, Automatica 45 (2009), 5, 1195-1201. MR2531593DOI10.1016/j.automatica.2008.11.005
- Zhao, J., Hill, D. J., 10.1109/tac.2008.920237, IEEE Trans. Automat. Control 53 (2008), 941-953. MR2419441DOI10.1109/tac.2008.920237
- Zhao, J., Hill, D. J., Liu, T., 10.1016/j.automatica.2011.09.012, Automatica 47 (2011), 2615-2625. MR2886930DOI10.1016/j.automatica.2011.09.012
- Zhu, M., Martínez, S., 10.1109/acc.2011.5991463, In: Proc. Amer. Control Conf. 2011, pp. 4063-4068. DOI10.1109/acc.2011.5991463
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.