A few remarks on vector optimization from the coalition-game theoretical point-of-view
In this survey article we shall summarise some of the recent progress that has occurred in the study of topological games as well as their applications to abstract analysis. The topics given here do not necessarily represent the most important problems from the area of topological games, but rather, they represent a selection of problems that are of interest to the authors.
A game is considered where the communication network of the first player is explicitly modelled. The second player may induce delays in this network, while the first player may counteract such actions. Costs are modelled through expectations over idempotent probability measures. The idempotent probabilities are conditioned by observational data, the arrival of which may have been delayed along the communication network. This induces a game where the state space consists of the network delays. Even...
Un jeu sportif bien connu, les quatre coins, est l'objet de cette étude. Les règles de ce jeu déterminent une succession de déplacements qui sont organisés selon une structure de groupe. L'ensemble des graphes de déplacement peut être distribué selon trois partitions qui offrent un précieux support à l'étude expérimentale: on obtient alors des classes d'équivalence de type cyclique, de type spatial et de type métrique. Les règles sont porteuses d'une logique qui accorde une grande importance à l'espace...
Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of σ-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.
This paper addresses an ongoing experience in the design of an artificial agent taking decisions and combining them with the decisions taken by human agents. The context is a serious game research project, aimed at computer-based support for participatory management of protected areas (and more specifically national parks) in order to promote biodiversity conservation and social inclusion. Its objective is to help various stakeholders (e.g., environmentalist, tourism operator) to collectively understand...
Taking the view that infinite plays are draws, we study Conway non-terminating games and non-losing strategies. These admit a sharp coalgebraic presentation, where non-terminating games are seen as a final coalgebra and game contructors, such as disjunctive sum, as final morphisms. We have shown, in a previous paper, that Conway’s theory of terminating games can be rephrased naturally in terms of game (pre)congruences. Namely, various...
Taking the view that infinite plays are draws, we study Conway non-terminating games and non-losing strategies. These admit a sharp coalgebraic presentation, where non-terminating games are seen as a final coalgebra and game contructors, such as disjunctive sum, as final morphisms. We have shown, in a previous paper, that Conway’s theory of terminating games can be rephrased naturally in terms of game (pre)congruences. Namely, various...