Kappa-Slender Modules
Communications in Mathematics (2020)
- Volume: 28, Issue: 1, page 1-12
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topDimitric, Radoslav. "Kappa-Slender Modules." Communications in Mathematics 28.1 (2020): 1-12. <http://eudml.org/doc/296982>.
@article{Dimitric2020,
abstract = {For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.},
author = {Dimitric, Radoslav},
journal = {Communications in Mathematics},
keywords = {kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory},
language = {eng},
number = {1},
pages = {1-12},
publisher = {University of Ostrava},
title = {Kappa-Slender Modules},
url = {http://eudml.org/doc/296982},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Dimitric, Radoslav
TI - Kappa-Slender Modules
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 1
SP - 1
EP - 12
AB - For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
LA - eng
KW - kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
UR - http://eudml.org/doc/296982
ER -
References
top- Dimitric, R., Slenderness in Abelian Categories, Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag, (1983) MR0722633
- Dimitric, R., Slenderness. Vol. I. Abelian Categories, 2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429. (2018) MR3930609
- Dimitric, R., Slenderness. Vol. II. Generalizations. Dualizations, 2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, (2021) MR3930609
- Fuchs, L., Abelian Groups, 1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960).. (1958) Zbl0091.02704MR0106942
- Hrbacek, K., Jech, T., Introduction to Set Theory (3rd edition, revised and expanded), 1999, New York -- Basel: Marcel Dekker, (1999) MR1697766
- Łoś, J., Linear equations and pure subgroups, Bull. Acad. Polon. Sci, 7, 1959, 13-18, (1959) MR0103922
- Stenström, B., Rings of Quotients. An Introduction to Methods of Ring Theory, 1975, Berlin, Heidelberg, New York: Springer-Verlag, (1975) MR0389953
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.