Equicontinuity, shadowing and distality in general topological spaces
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 711-726
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Huoyun. "Equicontinuity, shadowing and distality in general topological spaces." Czechoslovak Mathematical Journal 70.3 (2020): 711-726. <http://eudml.org/doc/297027>.
@article{Wang2020,
abstract = {We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definitions stated in terms of a metric in compact metric spaces. We prove that a uniformly chain transitive map with uniform shadowing property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has no uniform equicontinuity points.},
author = {Wang, Huoyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {shadowing; chain transitive; equicontinuity; uniform space},
language = {eng},
number = {3},
pages = {711-726},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equicontinuity, shadowing and distality in general topological spaces},
url = {http://eudml.org/doc/297027},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Wang, Huoyun
TI - Equicontinuity, shadowing and distality in general topological spaces
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 711
EP - 726
AB - We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definitions stated in terms of a metric in compact metric spaces. We prove that a uniformly chain transitive map with uniform shadowing property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has no uniform equicontinuity points.
LA - eng
KW - shadowing; chain transitive; equicontinuity; uniform space
UR - http://eudml.org/doc/297027
ER -
References
top- Akin, E., Auslander, J., Berg, K., 10.1515/9783110889383, Convergence in Ergodic Theory and Probability Ohio State University Mathematical Research Institute Publications 5, de Gruyter, Berlin (1996), 25-40. (1996) Zbl0861.54034MR1412595DOI10.1515/9783110889383
- Akin, E., Kolyada, S., 10.1088/0951-7715/16/4/313, Nonlinearity 16 (2003), 1421-1433. (2003) Zbl1045.37004MR1986303DOI10.1088/0951-7715/16/4/313
- Auslander, J., Greschonig, G., Nagar, A., 10.1090/S0002-9939-2014-12034-X, Proc. Am. Math. Soc. 142 (2014), 3129-3137. (2014) Zbl1327.37005MR3223369DOI10.1090/S0002-9939-2014-12034-X
- Auslander, J., Yorke, J. A., 10.2748/tmj/1178229634, Tohoku Math. J., II. Ser. 32 (1980), 177-188. (1980) Zbl0448.54040MR580273DOI10.2748/tmj/1178229634
- Bergelson, V., 10.1017/CBO9780511546716.004, Topics in Dynamics and Ergodic Theory London Mathematical Society Lecture Note Series 310, Cambridge University Press, Cambridge (2003), 8-39. (2003) Zbl1039.05063MR2052273DOI10.1017/CBO9780511546716.004
- Blanchard, F., Glasner, E., Kolyada, S., Maass, A., 10.1515/crll.2002.053, J. Reine Angew. Math. 547 (2002), 51-68. (2002) Zbl1059.37006MR1900136DOI10.1515/crll.2002.053
- Brian, W., 10.1017/jsl.2018.11, J. Symb. Log. 83 (2018), 477-495. (2018) Zbl1406.54020MR3835074DOI10.1017/jsl.2018.11
- Ceccherini-Silberstein, T., Coornaert, M., 10.1007/s10883-013-9182-7, J. Dyn. Control Syst. 19 (2013), 349-357. (2013) Zbl1338.37015MR3085695DOI10.1007/s10883-013-9182-7
- Das, P., Das, T., 10.1007/s10883-017-9388-1, J. Dyn. Control Syst. 24 (2018), 253-267. (2018) Zbl1385.37013MR3769323DOI10.1007/s10883-017-9388-1
- Dastjerdi, D. A., Hosseini, M., 10.1016/j.topol.2009.04.021, Topology Appl. 156 (2009), 2193-2195. (2009) Zbl1178.54018MR2544125DOI10.1016/j.topol.2009.04.021
- Ellis, D., Ellis, R., Nerurkar, M., 10.1090/S0002-9947-00-02704-5, Trans. Am. Math. Soc. 353 (2001), 1279-1320. (2001) Zbl0976.54039MR1806740DOI10.1090/S0002-9947-00-02704-5
- Engelking, R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Glasner, E., Weiss, B., 10.1088/0951-7715/6/6/014, Nonlinearity 6 (1993), 1067-1075. (1993) Zbl0790.58025MR1251259DOI10.1088/0951-7715/6/6/014
- Good, C., Macías, S., 10.3934/dcds.2018043, Discrete Contin. Dyn. Syst. 38 (2018), 1007-1031. (2018) Zbl1406.54021MR3808985DOI10.3934/dcds.2018043
- Hindman, N., Strauss, D., 10.1515/9783110809220, De Gruyter Expositions in Mathematics 27, Walter de Gruyter, Berlin (1998). (1998) Zbl0918.22001MR1642231DOI10.1515/9783110809220
- Hood, B. M., 10.1112/jlms/s2-8.4.633, J. Lond. Math. Soc., II. Ser. 8 (1974), 633-641. (1974) Zbl0291.54051MR0353282DOI10.1112/jlms/s2-8.4.633
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.