Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients
Applications of Mathematics (2021)
- Volume: 66, Issue: 1, page 1-19
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Yu, Bi, Hai, and Yang, Yidu. "Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients." Applications of Mathematics 66.1 (2021): 1-19. <http://eudml.org/doc/297091>.
@article{Zhang2021,
abstract = {In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on $d$-dimensional domains ($d=2, 3$). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.},
author = {Zhang, Yu, Bi, Hai, Yang, Yidu},
journal = {Applications of Mathematics},
keywords = {correction; Steklov eigenvalue problem; Crouzeix-Raviart finite element; asymptotic lower bounds; convergence order},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients},
url = {http://eudml.org/doc/297091},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Zhang, Yu
AU - Bi, Hai
AU - Yang, Yidu
TI - Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 1
EP - 19
AB - In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on $d$-dimensional domains ($d=2, 3$). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.
LA - eng
KW - correction; Steklov eigenvalue problem; Crouzeix-Raviart finite element; asymptotic lower bounds; convergence order
UR - http://eudml.org/doc/297091
ER -
References
top- Alonso, A., Russo, A. Dello, 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) Zbl1156.65094MR2463110DOI10.1016/j.cam.2008.01.008
- Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
- Babuška, I., Osborn, J., Eigenvalue problems, Finite Element Methods (Part 1) Handbook of Numererical Analysis II. North-Holland, Amsterdam (1991), 641-787. (1991) Zbl0875.65087MR1115240
- Boffi, D., 10.1017/S0962492910000012, Acta Numerica 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
- Bramble, J. H., Osborn, J. E., 10.1016/B978-0-12-068650-6.50019-8, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations A. K. Azis Academic Press, New York (1972), 387-408. (1972) Zbl0264.35055MR0431740DOI10.1016/B978-0-12-068650-6.50019-8
- Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8, Texts in Applied Mathematics 15. Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8
- Carstensen, C., Gallistl, D., 10.1007/s00211-013-0559-z, Numer. Math. 126 (2014), 33-51. (2014) Zbl1298.65165MR3149071DOI10.1007/s00211-013-0559-z
- Carstensen, C., Gedicke, J., 10.1090/S0025-5718-2014-02833-0, Math. Comput. 83 (2014), 2605-2629. (2014) Zbl1320.65162MR3246802DOI10.1090/S0025-5718-2014-02833-0
- Carstensen, C., Gedicke, J., Rim, D., 10.4208/jcm.1108-m3677, J. Comput. Math. 30 (2012), 337-353. (2012) Zbl1274.65290MR2965987DOI10.4208/jcm.1108-m3677
- Chavel, I., Feldman, E. A., 10.1007/BF00280444, Arch. Ration. Mech. Anal. 65 (1977), 263-273. (1977) Zbl0362.35059MR0448457DOI10.1007/BF00280444
- Chen, L., iFEM: an innovative finite element methods package in MATLAB, Technical Report, University of California, Irvine (2008), Available at https://pdfs.semanticscholar.org/b841/653da0c77051e91f411d4363afe3727f5cc5.pdf. (2008)
- Crouzeix, M., Raviart, P.-A., 10.1051/m2an/197307R300331, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-75. (1973) Zbl0302.65087MR0343661DOI10.1051/m2an/197307R300331
- Russo, A. Dello, Alonso, A. E., 10.1016/j.camwa.2011.09.061, Comput. Math. Appl. 62 (2011), 4100-4117. (2011) Zbl1236.65142MR2859966DOI10.1016/j.camwa.2011.09.061
- Garau, E. M., Morin, P., 10.1093/imanum/drp055, IMA J. Numer. Anal. 31 (2011), 914-946. (2011) Zbl1225.65107MR2832785DOI10.1093/imanum/drp055
- Hu, J., Huang, Y., 10.4208/aamm.11-m11103, Adv. Appl. Math. Mech. 5 (2013), 1-18. (2013) Zbl1262.65171MR3021142DOI10.4208/aamm.11-m11103
- Hu, J., Huang, Y., Lin, Q., 10.1007/s10915-014-9821-5, J. Sci. Comput. 61 (2014), 196-221. (2014) Zbl1335.65089MR3254372DOI10.1007/s10915-014-9821-5
- Hu, J., Huang, Y., Ma, R., 10.1007/s10915-015-0126-0, J. Sci. Comput. 67 (2016), 1181-1197. (2016) Zbl1343.65131MR3493499DOI10.1007/s10915-015-0126-0
- Li, Y., Lower approximation of eigenvalues by the nonconforming finite element method, Math. Numer. Sin. 30 (2008), 195-200 Chinese. (2008) Zbl1174.65514MR2437993
- Li, Q., Lin, Q., Xie, H., 10.1007/s10492-013-0007-5, Appl. Math., Praha 58 (2013), 129-151. (2013) Zbl1274.65296MR3034819DOI10.1007/s10492-013-0007-5
- Li, Q., Liu, X., 10.21136/AM.2018.0095-18, Appl. Math., Praha 63 (2018), 367-379. (2018) Zbl06945737MR3833665DOI10.21136/AM.2018.0095-18
- Lin, Q., Huang, H.-T., Li, Z.-C., 10.1090/S0025-5718-08-02098-X, Math. Comput. 77 (2008), 2061-2084. (2008) Zbl1198.65228MR2429874DOI10.1090/S0025-5718-08-02098-X
- Lin, Q., Xie, H., 10.3934/ipi.2013.7.795, Inverse Probl. Imaging 7 (2013), 795-811. (2013) Zbl1273.65178MR3105355DOI10.3934/ipi.2013.7.795
- Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
- Liu, X., 10.1016/j.amc.2015.03.048, Appl. Math. Comput. 267 (2015), 341-355. (2015) Zbl1410.35088MR3399052DOI10.1016/j.amc.2015.03.048
- Luo, F., Lin, Q., Xie, H., 10.1007/s11425-012-4382-2, Sci. China, Math. 55 (2012), 1069-1082. (2012) Zbl1261.65112MR2912496DOI10.1007/s11425-012-4382-2
- Oden, J. T., Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements, Pure and Applied Mathematics. Wiley-Interscience, New York (1976). (1976) Zbl0336.35001MR0461950
- Savaré, G., 10.1006/jfan.1997.3158, J. Funct. Anal. 152 (1998), 176-201. (1998) Zbl0889.35018MR1600081DOI10.1006/jfan.1997.3158
- Šebestová, I., Vejchodský, T., 10.1137/13091467X, SIAM J. Numer. Anal. 52 (2014), 308-329. (2014) Zbl1287.35050MR3163245DOI10.1137/13091467X
- Xie, M., Xie, H., Liu, X., 10.1007/s13160-017-0291-7, Japan J. Ind. Appl. Math. 35 (2018), 335-354. (2018) Zbl06859028MR3768250DOI10.1007/s13160-017-0291-7
- Yang, Y., Han, J., Bi, H., Yu, Y., 10.1007/s10915-014-9855-8, J. Sci. Comput. 62 (2015), 284-299. (2015) Zbl1320.65163MR3295037DOI10.1007/s10915-014-9855-8
- Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1190.65168MR2553141DOI10.1016/j.apnum.2009.04.005
- Yang, Y., Lin, Q., Bi, H., Li, Q., 10.1007/s10444-011-9185-4, Adv. Comput. Math. 36 (2012), 443-450. (2012) Zbl1253.65181MR2893474DOI10.1007/s10444-011-9185-4
- Yang, Y., Zhang, Y., Bi, H., 10.1016/j.cma.2019.112697, Comput. Methods Appl. Mech. Eng. 360 (2020), Article ID 112697, 20 pages. (2020) Zbl07194504MR4049892DOI10.1016/j.cma.2019.112697
- Yang, Y., Zhang, Z., Lin, F., 10.1007/s11425-009-0198-0, Sci. China, Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
- You, C., Xie, H., Liu, X., 10.1137/18M1189592, SIAM J. Numer. Anal. 57 (2019), 1395-1410. (2019) Zbl1427.65384MR3961991DOI10.1137/18M1189592
- Zhang, Z., Yang, Y., Chen, Z., Eigenvalue approximation from below by Wilson's element, Math. Numer. Sin. 29 (2007), 319-321 Chinese. (2007) Zbl1142.65435MR2370469
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.