Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients

Yu Zhang; Hai Bi; Yidu Yang

Applications of Mathematics (2021)

  • Volume: 66, Issue: 1, page 1-19
  • ISSN: 0862-7940

Abstract

top
In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on d -dimensional domains ( d = 2 , 3 ). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.

How to cite

top

Zhang, Yu, Bi, Hai, and Yang, Yidu. "Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients." Applications of Mathematics 66.1 (2021): 1-19. <http://eudml.org/doc/297091>.

@article{Zhang2021,
abstract = {In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on $d$-dimensional domains ($d=2, 3$). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.},
author = {Zhang, Yu, Bi, Hai, Yang, Yidu},
journal = {Applications of Mathematics},
keywords = {correction; Steklov eigenvalue problem; Crouzeix-Raviart finite element; asymptotic lower bounds; convergence order},
language = {eng},
number = {1},
pages = {1-19},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients},
url = {http://eudml.org/doc/297091},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Zhang, Yu
AU - Bi, Hai
AU - Yang, Yidu
TI - Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 1
EP - 19
AB - In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on $d$-dimensional domains ($d=2, 3$). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.
LA - eng
KW - correction; Steklov eigenvalue problem; Crouzeix-Raviart finite element; asymptotic lower bounds; convergence order
UR - http://eudml.org/doc/297091
ER -

References

top
  1. Alonso, A., Russo, A. Dello, 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) Zbl1156.65094MR2463110DOI10.1016/j.cam.2008.01.008
  2. Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
  3. Babuška, I., Osborn, J., Eigenvalue problems, Finite Element Methods (Part 1) Handbook of Numererical Analysis II. North-Holland, Amsterdam (1991), 641-787. (1991) Zbl0875.65087MR1115240
  4. Boffi, D., 10.1017/S0962492910000012, Acta Numerica 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
  5. Bramble, J. H., Osborn, J. E., 10.1016/B978-0-12-068650-6.50019-8, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations A. K. Azis Academic Press, New York (1972), 387-408. (1972) Zbl0264.35055MR0431740DOI10.1016/B978-0-12-068650-6.50019-8
  6. Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8, Texts in Applied Mathematics 15. Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8
  7. Carstensen, C., Gallistl, D., 10.1007/s00211-013-0559-z, Numer. Math. 126 (2014), 33-51. (2014) Zbl1298.65165MR3149071DOI10.1007/s00211-013-0559-z
  8. Carstensen, C., Gedicke, J., 10.1090/S0025-5718-2014-02833-0, Math. Comput. 83 (2014), 2605-2629. (2014) Zbl1320.65162MR3246802DOI10.1090/S0025-5718-2014-02833-0
  9. Carstensen, C., Gedicke, J., Rim, D., 10.4208/jcm.1108-m3677, J. Comput. Math. 30 (2012), 337-353. (2012) Zbl1274.65290MR2965987DOI10.4208/jcm.1108-m3677
  10. Chavel, I., Feldman, E. A., 10.1007/BF00280444, Arch. Ration. Mech. Anal. 65 (1977), 263-273. (1977) Zbl0362.35059MR0448457DOI10.1007/BF00280444
  11. Chen, L., iFEM: an innovative finite element methods package in MATLAB, Technical Report, University of California, Irvine (2008), Available at https://pdfs.semanticscholar.org/b841/653da0c77051e91f411d4363afe3727f5cc5.pdf. (2008) 
  12. Crouzeix, M., Raviart, P.-A., 10.1051/m2an/197307R300331, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-75. (1973) Zbl0302.65087MR0343661DOI10.1051/m2an/197307R300331
  13. Russo, A. Dello, Alonso, A. E., 10.1016/j.camwa.2011.09.061, Comput. Math. Appl. 62 (2011), 4100-4117. (2011) Zbl1236.65142MR2859966DOI10.1016/j.camwa.2011.09.061
  14. Garau, E. M., Morin, P., 10.1093/imanum/drp055, IMA J. Numer. Anal. 31 (2011), 914-946. (2011) Zbl1225.65107MR2832785DOI10.1093/imanum/drp055
  15. Hu, J., Huang, Y., 10.4208/aamm.11-m11103, Adv. Appl. Math. Mech. 5 (2013), 1-18. (2013) Zbl1262.65171MR3021142DOI10.4208/aamm.11-m11103
  16. Hu, J., Huang, Y., Lin, Q., 10.1007/s10915-014-9821-5, J. Sci. Comput. 61 (2014), 196-221. (2014) Zbl1335.65089MR3254372DOI10.1007/s10915-014-9821-5
  17. Hu, J., Huang, Y., Ma, R., 10.1007/s10915-015-0126-0, J. Sci. Comput. 67 (2016), 1181-1197. (2016) Zbl1343.65131MR3493499DOI10.1007/s10915-015-0126-0
  18. Li, Y., Lower approximation of eigenvalues by the nonconforming finite element method, Math. Numer. Sin. 30 (2008), 195-200 Chinese. (2008) Zbl1174.65514MR2437993
  19. Li, Q., Lin, Q., Xie, H., 10.1007/s10492-013-0007-5, Appl. Math., Praha 58 (2013), 129-151. (2013) Zbl1274.65296MR3034819DOI10.1007/s10492-013-0007-5
  20. Li, Q., Liu, X., 10.21136/AM.2018.0095-18, Appl. Math., Praha 63 (2018), 367-379. (2018) Zbl06945737MR3833665DOI10.21136/AM.2018.0095-18
  21. Lin, Q., Huang, H.-T., Li, Z.-C., 10.1090/S0025-5718-08-02098-X, Math. Comput. 77 (2008), 2061-2084. (2008) Zbl1198.65228MR2429874DOI10.1090/S0025-5718-08-02098-X
  22. Lin, Q., Xie, H., 10.3934/ipi.2013.7.795, Inverse Probl. Imaging 7 (2013), 795-811. (2013) Zbl1273.65178MR3105355DOI10.3934/ipi.2013.7.795
  23. Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
  24. Liu, X., 10.1016/j.amc.2015.03.048, Appl. Math. Comput. 267 (2015), 341-355. (2015) Zbl1410.35088MR3399052DOI10.1016/j.amc.2015.03.048
  25. Luo, F., Lin, Q., Xie, H., 10.1007/s11425-012-4382-2, Sci. China, Math. 55 (2012), 1069-1082. (2012) Zbl1261.65112MR2912496DOI10.1007/s11425-012-4382-2
  26. Oden, J. T., Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements, Pure and Applied Mathematics. Wiley-Interscience, New York (1976). (1976) Zbl0336.35001MR0461950
  27. Savaré, G., 10.1006/jfan.1997.3158, J. Funct. Anal. 152 (1998), 176-201. (1998) Zbl0889.35018MR1600081DOI10.1006/jfan.1997.3158
  28. Šebestová, I., Vejchodský, T., 10.1137/13091467X, SIAM J. Numer. Anal. 52 (2014), 308-329. (2014) Zbl1287.35050MR3163245DOI10.1137/13091467X
  29. Xie, M., Xie, H., Liu, X., 10.1007/s13160-017-0291-7, Japan J. Ind. Appl. Math. 35 (2018), 335-354. (2018) Zbl06859028MR3768250DOI10.1007/s13160-017-0291-7
  30. Yang, Y., Han, J., Bi, H., Yu, Y., 10.1007/s10915-014-9855-8, J. Sci. Comput. 62 (2015), 284-299. (2015) Zbl1320.65163MR3295037DOI10.1007/s10915-014-9855-8
  31. Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1190.65168MR2553141DOI10.1016/j.apnum.2009.04.005
  32. Yang, Y., Lin, Q., Bi, H., Li, Q., 10.1007/s10444-011-9185-4, Adv. Comput. Math. 36 (2012), 443-450. (2012) Zbl1253.65181MR2893474DOI10.1007/s10444-011-9185-4
  33. Yang, Y., Zhang, Y., Bi, H., 10.1016/j.cma.2019.112697, Comput. Methods Appl. Mech. Eng. 360 (2020), Article ID 112697, 20 pages. (2020) Zbl07194504MR4049892DOI10.1016/j.cma.2019.112697
  34. Yang, Y., Zhang, Z., Lin, F., 10.1007/s11425-009-0198-0, Sci. China, Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
  35. You, C., Xie, H., Liu, X., 10.1137/18M1189592, SIAM J. Numer. Anal. 57 (2019), 1395-1410. (2019) Zbl1427.65384MR3961991DOI10.1137/18M1189592
  36. Zhang, Z., Yang, Y., Chen, Z., Eigenvalue approximation from below by Wilson's element, Math. Numer. Sin. 29 (2007), 319-321 Chinese. (2007) Zbl1142.65435MR2370469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.