Explicit finite element error estimates for nonhomogeneous Neumann problems

Qin Li; Xuefeng Liu

Applications of Mathematics (2018)

  • Volume: 63, Issue: 3, page 367-379
  • ISSN: 0862-7940

Abstract

top
The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as 0 . 5 .

How to cite

top

Li, Qin, and Liu, Xuefeng. "Explicit finite element error estimates for nonhomogeneous Neumann problems." Applications of Mathematics 63.3 (2018): 367-379. <http://eudml.org/doc/294593>.

@article{Li2018,
abstract = {The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as $0.5$.},
author = {Li, Qin, Liu, Xuefeng},
journal = {Applications of Mathematics},
keywords = {finite element methods; nonhomogeneous Neumann problems; explicit error estimates},
language = {eng},
number = {3},
pages = {367-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Explicit finite element error estimates for nonhomogeneous Neumann problems},
url = {http://eudml.org/doc/294593},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Li, Qin
AU - Liu, Xuefeng
TI - Explicit finite element error estimates for nonhomogeneous Neumann problems
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 367
EP - 379
AB - The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as $0.5$.
LA - eng
KW - finite element methods; nonhomogeneous Neumann problems; explicit error estimates
UR - http://eudml.org/doc/294593
ER -

References

top
  1. Ainsworth, M., Vejchodský, T., 10.1007/s00211-011-0384-1, Numer. Math. 119 (2011), 219-243. (2011) Zbl1229.65194MR2836086DOI10.1007/s00211-011-0384-1
  2. Ainsworth, M., Vejchodský, T., 10.1016/j.cma.2014.08.005, Comput. Methods Appl. Mech. Eng. 281 (2014), 184-199. (2014) MR3262938DOI10.1016/j.cma.2014.08.005
  3. Babuška, I., Osborn, J., Eigenvalue problems, Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1) P. G. Ciarlet, J. L. Lions North-Holland, Amsterdam (1991), 641-787. (1991) Zbl0875.65087MR1115240
  4. Bermúdez, A., Rodríguez, R., Santamarina, D., 10.1007/s002110000175, Numer. Math. 87 (2000), 201-227. (2000) Zbl0998.76046MR1804656DOI10.1007/s002110000175
  5. Braess, D., 10.1017/CBO9780511618635, Cambridge University Press, Cambridge (2007). (2007) Zbl1118.65117MR2322235DOI10.1017/CBO9780511618635
  6. Bramble, J. H., Osborn, J. E., 10.1016/b978-0-12-068650-6.50019-8, Mathematical Foundations of the Finite Element Method with Applications to PDE A. K. Aziz Academic Press, New York (1972), 387-408. (1972) Zbl0264.35055MR0431740DOI10.1016/b978-0-12-068650-6.50019-8
  7. Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15, Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  8. Bucur, D., Ionescu, I. R., 10.1007/s00033-006-0070-9, Z. Angew. Math. Phys. 57 (2006), 1042-1056. (2006) Zbl1106.35038MR2279256DOI10.1007/s00033-006-0070-9
  9. Grisvard, P., Elliptic Problems for Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman, Boston (1985). (1985) Zbl0695.35060MR0775683
  10. Kikuchi, F., Saito, H., 10.1016/j.cam.2005.07.031, J. Comput. Appl. Math. 199 (2007), 329-336. (2007) Zbl1109.65094MR2269515DOI10.1016/j.cam.2005.07.031
  11. Kobayashi, K., On the interpolation constants over triangular elements, Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124. (2015) Zbl1363.65014MR3700193
  12. Laugesen, R. S., Siudeja, B. A., 10.1016/j.jde.2010.02.020, J. Differ. Equations 249 (2010), 118-135. (2010) Zbl1193.35112MR2644129DOI10.1016/j.jde.2010.02.020
  13. Li, Q., Lin, Q., Xie, H., 10.1007/s10492-013-0007-5, Appl. Math., Praha 58 (2013), 129-151. (2013) Zbl1274.65296MR3034819DOI10.1007/s10492-013-0007-5
  14. Liu, X., 10.1016/j.amc.2015.03.048, Appl. Math. Comput. 267 (2015), 341-355. (2015) MR3399052DOI10.1016/j.amc.2015.03.048
  15. Liu, X., Kikuchi, F., Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements, J. Math. Sci., Tokyo 17 (2010), 27-78. (2010) Zbl1248.65118MR2676659
  16. Liu, X., Oishi, S., 10.1137/120878446, SIAM J. Numer. Anal. 51 (2013), 1634-1654. (2013) Zbl1273.65179MR3061473DOI10.1137/120878446
  17. Šebestová, I., Vejchodský, T., 10.1137/13091467X, SIAM J. Numer. Anal. 52 (2014), 308-329. (2014) Zbl1287.35050MR3163245DOI10.1137/13091467X
  18. Takayasu, A., Liu, X., Oishi, S., 10.1587/nolta.4.34, Nonlinear Theory and Its Applications 4 (2013), 34-61. (2013) DOI10.1587/nolta.4.34
  19. Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1190.65168MR2553141DOI10.1016/j.apnum.2009.04.005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.