Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li; Qun Lin; Hehu Xie

Applications of Mathematics (2013)

  • Volume: 58, Issue: 2, page 129-151
  • ISSN: 0862-7940

Abstract

top
The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.

How to cite

top

Li, Qin, Lin, Qun, and Xie, Hehu. "Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations." Applications of Mathematics 58.2 (2013): 129-151. <http://eudml.org/doc/252552>.

@article{Li2013,
abstract = {The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, $Q_\{1\}^\{\rm rot\}$, $EQ_\{1\}^\{\rm rot\}$ and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.},
author = {Li, Qin, Lin, Qun, Xie, Hehu},
journal = {Applications of Mathematics},
keywords = {Steklov eigenvalue problem; nonconforming finite element; error estimate; lower bound of the eigenvalues; Steklov eigenvalue problem; nonconforming finite element; error estimate; numerical examples; lower bound approximations; second-order elliptic equation; convergence; eigenfunctions},
language = {eng},
number = {2},
pages = {129-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations},
url = {http://eudml.org/doc/252552},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Li, Qin
AU - Lin, Qun
AU - Xie, Hehu
TI - Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 129
EP - 151
AB - The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, $Q_{1}^{\rm rot}$, $EQ_{1}^{\rm rot}$ and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.
LA - eng
KW - Steklov eigenvalue problem; nonconforming finite element; error estimate; lower bound of the eigenvalues; Steklov eigenvalue problem; nonconforming finite element; error estimate; numerical examples; lower bound approximations; second-order elliptic equation; convergence; eigenfunctions
UR - http://eudml.org/doc/252552
ER -

References

top
  1. Ahn, H. J., 10.1090/qam/613954, Quart. Appl. Math. 39 (1981), 109-117. (1981) MR0613954DOI10.1090/qam/613954
  2. Russo, A. Alonso A. D., 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) MR2463110DOI10.1016/j.cam.2008.01.008
  3. Andreev, A. B., Todorov, T. D., 10.1093/imanum/24.2.309, IMA J. Numer. Anal. 24 (2004), 309-322. (2004) Zbl1069.65120MR2046179DOI10.1093/imanum/24.2.309
  4. Arbogast, T., Chen, Z., On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comput. 64 (1995), 943-972. (1995) Zbl0829.65127MR1303084
  5. Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
  6. Armentano, M. G., Padra, C., 10.1016/j.apnum.2007.01.011, Appl. Numer. Math. 58 (2008), 593-601. (2008) Zbl1140.65078MR2407734DOI10.1016/j.apnum.2007.01.011
  7. Babuška, I., Osborn, J., Eigenvalue problems, In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2 North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
  8. Beattie, C., Goerisch, F., 10.1007/s002110050164, Numer. Math. 72 (1995), 143-172. (1995) Zbl0857.65063MR1362258DOI10.1007/s002110050164
  9. Bergman, S., Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press New York (1953). (1953) Zbl0053.39003MR0054140
  10. Bermúdez, A., Rodríguez, R., Santamarina, D., 10.1007/s002110000175, Numer. Math. 87 (2000), 201-227. (2000) Zbl0998.76046MR1804656DOI10.1007/s002110000175
  11. Bernardi, C., Hecht, F., 10.1090/S0025-5718-01-01401-6, Math. Comput. 71 (2002), 1371-1403. (2002) Zbl1012.65108MR1933036DOI10.1090/S0025-5718-01-01401-6
  12. Bramble, J. H., Osborn, J. E., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, Math. Found. Finite Element Method Applications PDE A. Aziz Academic Press New York (1972), 387-408. (1972) Zbl0264.35055MR0431740
  13. Bucur, D., Ionescu, I. R., 10.1007/s00033-006-0070-9, Z. Angew. Math. Phys. 57 (2006), 1042-1056. (2006) Zbl1106.35038MR2279256DOI10.1007/s00033-006-0070-9
  14. Cai, Z., Ye, X., Zhang, S., 10.1137/100805133, SIAM J. Numer. Anal. 49 (2011), 1761-1787. (2011) Zbl1232.65142MR2837483DOI10.1137/100805133
  15. Ciarlet, P. G., 10.1016/S1570-8659(05)80039-0, In: Part 1. Finite Element Methods. Handbook of Numerical Analysis, Vol. 2 P. Ciarlet, J.-L. Lions North-Holland (1991), 21-343. (1991) Zbl0875.65086MR1115237DOI10.1016/S1570-8659(05)80039-0
  16. Conca, C., Planchard, J., Vanninathan, M., Fluid and Periodic Structures, John Wiley & Sons Chichester (1995). (1995) MR1652238
  17. Crouzeix, M., Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. (1973) MR0343661
  18. Dunford, N., Schwartz, J. T., Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space, Interscience Publishers/John Wiley & Sons New York/London (1963). (1963) MR1009163
  19. Goerisch, F., Albrecht, J., The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192, Springer Berlin (1986). (1986) MR0877140
  20. Goerisch, F., He, Z., The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7, Academic Press Boston (1990). (1990) MR1104000
  21. Han, H. D., Guan, Z., An analysis of the boundary element approximation of Steklov eigenvalue problems, In: Numerical Methods for Partial Differential Equations World Scientific River Edge (1992), 35-51. (1992) MR1160822
  22. Han, H. D., Guan, Z., He, B., Boundary element approximation of Steklov eigenvalue problem, Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128-135 Chinese. (1994) MR1293212
  23. Hinton, D. B., Shaw, J. K., Differential operators with spectral parameter incompletely in the boundary conditions, Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. (1990) Zbl0715.34133MR1086767
  24. Hu, J., Huang, Y., Lin, Q., The analysis of the lower approximation of eigenvalues by nonconforming elements, (to appear). 
  25. Huang, J., Lü, T., The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems, J. Comput. Math. 22 (2004), 719-726. (2004) Zbl1069.65123MR2080438
  26. Křížek, M., Roos, H.-G., Chen, W., 10.1051/m2an/2011003, ESAIM, Math. Model. Numer. Anal. 45 (2011), 915-924 (2011). (2011) Zbl1269.65113MR2817550DOI10.1051/m2an/2011003
  27. Li, M., Lin, Q., Zhang, S., 10.1007/s10444-009-9118-7, Adv. Comput. Math. 33 (2010), 25-44. (2010) Zbl1213.65141MR2645290DOI10.1007/s10444-009-9118-7
  28. Lin, Q., Lin, J., Finite Element Methods: Accuracy and Improvement, Science Press Beijing (2006). (2006) 
  29. Lin, Q., Tobiska, L., Zhou, A., 10.1093/imanum/drh008, IMA J. Numer. Anal. 25 (2005), 160-181. (2005) Zbl1068.65122MR2110239DOI10.1093/imanum/drh008
  30. Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
  31. Rannacher, R., Turek, S., 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97-111. (1992) Zbl0742.76051MR1148797DOI10.1002/num.1690080202
  32. Tang, W., Guan, Z., Han, H., Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation, J. Comput. Math. 16 (1998), 165-178. (1998) Zbl0977.65100MR1610674
  33. Wang, L., Xu, X., Foundation of Mathematics in Finite Element Methods, Scientific and Technical Publishers Beijing (2004). (2004) 
  34. Yang, Y., A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math. 18 (2000), 413-418. (2000) Zbl0957.65092MR1773912
  35. Yang, Y., Chen, Z., 10.1007/s11425-008-0002-6, Sci. China, Ser. A 51 (2008), 1232-1242. (2008) Zbl1153.65055MR2417491DOI10.1007/s11425-008-0002-6
  36. Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1212.65435MR2553141DOI10.1016/j.apnum.2009.04.005
  37. Yang, Y., Bi, H., 10.1016/j.apnum.2010.03.019, Appl. Numer. Math. 60 (2010), 782-787. (2010) Zbl1198.65220MR2647432DOI10.1016/j.apnum.2010.03.019
  38. Yang, Y., Zhang, Z., Lin, F., 10.1007/s11425-009-0198-0, Sci. China Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
  39. Zhang, Z., Yang, Y., Chen, Z., Eigenvalue approximation from below by Wilson's element, Math. Numer. Sin. 29 (2007), 319-321 Chinese. (2007) Zbl1142.65435MR2370469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.