Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
Applications of Mathematics (2013)
- Volume: 58, Issue: 2, page 129-151
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ahn, H. J., 10.1090/qam/613954, Quart. Appl. Math. 39 (1981), 109-117. (1981) MR0613954DOI10.1090/qam/613954
- Russo, A. Alonso A. D., 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) MR2463110DOI10.1016/j.cam.2008.01.008
- Andreev, A. B., Todorov, T. D., 10.1093/imanum/24.2.309, IMA J. Numer. Anal. 24 (2004), 309-322. (2004) Zbl1069.65120MR2046179DOI10.1093/imanum/24.2.309
- Arbogast, T., Chen, Z., On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comput. 64 (1995), 943-972. (1995) Zbl0829.65127MR1303084
- Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
- Armentano, M. G., Padra, C., 10.1016/j.apnum.2007.01.011, Appl. Numer. Math. 58 (2008), 593-601. (2008) Zbl1140.65078MR2407734DOI10.1016/j.apnum.2007.01.011
- Babuška, I., Osborn, J., Eigenvalue problems, In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2 North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
- Beattie, C., Goerisch, F., 10.1007/s002110050164, Numer. Math. 72 (1995), 143-172. (1995) Zbl0857.65063MR1362258DOI10.1007/s002110050164
- Bergman, S., Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press New York (1953). (1953) Zbl0053.39003MR0054140
- Bermúdez, A., Rodríguez, R., Santamarina, D., 10.1007/s002110000175, Numer. Math. 87 (2000), 201-227. (2000) Zbl0998.76046MR1804656DOI10.1007/s002110000175
- Bernardi, C., Hecht, F., 10.1090/S0025-5718-01-01401-6, Math. Comput. 71 (2002), 1371-1403. (2002) Zbl1012.65108MR1933036DOI10.1090/S0025-5718-01-01401-6
- Bramble, J. H., Osborn, J. E., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, Math. Found. Finite Element Method Applications PDE A. Aziz Academic Press New York (1972), 387-408. (1972) Zbl0264.35055MR0431740
- Bucur, D., Ionescu, I. R., 10.1007/s00033-006-0070-9, Z. Angew. Math. Phys. 57 (2006), 1042-1056. (2006) Zbl1106.35038MR2279256DOI10.1007/s00033-006-0070-9
- Cai, Z., Ye, X., Zhang, S., 10.1137/100805133, SIAM J. Numer. Anal. 49 (2011), 1761-1787. (2011) Zbl1232.65142MR2837483DOI10.1137/100805133
- Ciarlet, P. G., 10.1016/S1570-8659(05)80039-0, In: Part 1. Finite Element Methods. Handbook of Numerical Analysis, Vol. 2 P. Ciarlet, J.-L. Lions North-Holland (1991), 21-343. (1991) Zbl0875.65086MR1115237DOI10.1016/S1570-8659(05)80039-0
- Conca, C., Planchard, J., Vanninathan, M., Fluid and Periodic Structures, John Wiley & Sons Chichester (1995). (1995) MR1652238
- Crouzeix, M., Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. (1973) MR0343661
- Dunford, N., Schwartz, J. T., Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space, Interscience Publishers/John Wiley & Sons New York/London (1963). (1963) MR1009163
- Goerisch, F., Albrecht, J., The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192, Springer Berlin (1986). (1986) MR0877140
- Goerisch, F., He, Z., The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7, Academic Press Boston (1990). (1990) MR1104000
- Han, H. D., Guan, Z., An analysis of the boundary element approximation of Steklov eigenvalue problems, In: Numerical Methods for Partial Differential Equations World Scientific River Edge (1992), 35-51. (1992) MR1160822
- Han, H. D., Guan, Z., He, B., Boundary element approximation of Steklov eigenvalue problem, Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128-135 Chinese. (1994) MR1293212
- Hinton, D. B., Shaw, J. K., Differential operators with spectral parameter incompletely in the boundary conditions, Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. (1990) Zbl0715.34133MR1086767
- Hu, J., Huang, Y., Lin, Q., The analysis of the lower approximation of eigenvalues by nonconforming elements, (to appear).
- Huang, J., Lü, T., The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems, J. Comput. Math. 22 (2004), 719-726. (2004) Zbl1069.65123MR2080438
- Křížek, M., Roos, H.-G., Chen, W., 10.1051/m2an/2011003, ESAIM, Math. Model. Numer. Anal. 45 (2011), 915-924 (2011). (2011) Zbl1269.65113MR2817550DOI10.1051/m2an/2011003
- Li, M., Lin, Q., Zhang, S., 10.1007/s10444-009-9118-7, Adv. Comput. Math. 33 (2010), 25-44. (2010) Zbl1213.65141MR2645290DOI10.1007/s10444-009-9118-7
- Lin, Q., Lin, J., Finite Element Methods: Accuracy and Improvement, Science Press Beijing (2006). (2006)
- Lin, Q., Tobiska, L., Zhou, A., 10.1093/imanum/drh008, IMA J. Numer. Anal. 25 (2005), 160-181. (2005) Zbl1068.65122MR2110239DOI10.1093/imanum/drh008
- Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
- Rannacher, R., Turek, S., 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97-111. (1992) Zbl0742.76051MR1148797DOI10.1002/num.1690080202
- Tang, W., Guan, Z., Han, H., Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation, J. Comput. Math. 16 (1998), 165-178. (1998) Zbl0977.65100MR1610674
- Wang, L., Xu, X., Foundation of Mathematics in Finite Element Methods, Scientific and Technical Publishers Beijing (2004). (2004)
- Yang, Y., A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math. 18 (2000), 413-418. (2000) Zbl0957.65092MR1773912
- Yang, Y., Chen, Z., 10.1007/s11425-008-0002-6, Sci. China, Ser. A 51 (2008), 1232-1242. (2008) Zbl1153.65055MR2417491DOI10.1007/s11425-008-0002-6
- Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1212.65435MR2553141DOI10.1016/j.apnum.2009.04.005
- Yang, Y., Bi, H., 10.1016/j.apnum.2010.03.019, Appl. Numer. Math. 60 (2010), 782-787. (2010) Zbl1198.65220MR2647432DOI10.1016/j.apnum.2010.03.019
- Yang, Y., Zhang, Z., Lin, F., 10.1007/s11425-009-0198-0, Sci. China Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
- Zhang, Z., Yang, Y., Chen, Z., Eigenvalue approximation from below by Wilson's element, Math. Numer. Sin. 29 (2007), 319-321 Chinese. (2007) Zbl1142.65435MR2370469
Citations in EuDML Documents
top- Qin Li, Xuefeng Liu, Explicit finite element error estimates for nonhomogeneous Neumann problems
- Yu Zhang, Hai Bi, Yidu Yang, Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients
- Yuping Zeng, Feng Wang, A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems