Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
Applications of Mathematics (2013)
- Volume: 58, Issue: 2, page 129-151
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Qin, Lin, Qun, and Xie, Hehu. "Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations." Applications of Mathematics 58.2 (2013): 129-151. <http://eudml.org/doc/252552>.
@article{Li2013,
abstract = {The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, $Q_\{1\}^\{\rm rot\}$, $EQ_\{1\}^\{\rm rot\}$ and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.},
author = {Li, Qin, Lin, Qun, Xie, Hehu},
journal = {Applications of Mathematics},
keywords = {Steklov eigenvalue problem; nonconforming finite element; error estimate; lower bound of the eigenvalues; Steklov eigenvalue problem; nonconforming finite element; error estimate; numerical examples; lower bound approximations; second-order elliptic equation; convergence; eigenfunctions},
language = {eng},
number = {2},
pages = {129-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations},
url = {http://eudml.org/doc/252552},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Li, Qin
AU - Lin, Qun
AU - Xie, Hehu
TI - Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 129
EP - 151
AB - The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, $Q_{1}^{\rm rot}$, $EQ_{1}^{\rm rot}$ and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.
LA - eng
KW - Steklov eigenvalue problem; nonconforming finite element; error estimate; lower bound of the eigenvalues; Steklov eigenvalue problem; nonconforming finite element; error estimate; numerical examples; lower bound approximations; second-order elliptic equation; convergence; eigenfunctions
UR - http://eudml.org/doc/252552
ER -
References
top- Ahn, H. J., 10.1090/qam/613954, Quart. Appl. Math. 39 (1981), 109-117. (1981) MR0613954DOI10.1090/qam/613954
- Russo, A. Alonso A. D., 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) MR2463110DOI10.1016/j.cam.2008.01.008
- Andreev, A. B., Todorov, T. D., 10.1093/imanum/24.2.309, IMA J. Numer. Anal. 24 (2004), 309-322. (2004) Zbl1069.65120MR2046179DOI10.1093/imanum/24.2.309
- Arbogast, T., Chen, Z., On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comput. 64 (1995), 943-972. (1995) Zbl0829.65127MR1303084
- Armentano, M. G., Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101. (2004) Zbl1065.65127MR2040799
- Armentano, M. G., Padra, C., 10.1016/j.apnum.2007.01.011, Appl. Numer. Math. 58 (2008), 593-601. (2008) Zbl1140.65078MR2407734DOI10.1016/j.apnum.2007.01.011
- Babuška, I., Osborn, J., Eigenvalue problems, In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2 North-Holland Amsterdam (1991), 641-787. (1991) MR1115240
- Beattie, C., Goerisch, F., 10.1007/s002110050164, Numer. Math. 72 (1995), 143-172. (1995) Zbl0857.65063MR1362258DOI10.1007/s002110050164
- Bergman, S., Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press New York (1953). (1953) Zbl0053.39003MR0054140
- Bermúdez, A., Rodríguez, R., Santamarina, D., 10.1007/s002110000175, Numer. Math. 87 (2000), 201-227. (2000) Zbl0998.76046MR1804656DOI10.1007/s002110000175
- Bernardi, C., Hecht, F., 10.1090/S0025-5718-01-01401-6, Math. Comput. 71 (2002), 1371-1403. (2002) Zbl1012.65108MR1933036DOI10.1090/S0025-5718-01-01401-6
- Bramble, J. H., Osborn, J. E., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, Math. Found. Finite Element Method Applications PDE A. Aziz Academic Press New York (1972), 387-408. (1972) Zbl0264.35055MR0431740
- Bucur, D., Ionescu, I. R., 10.1007/s00033-006-0070-9, Z. Angew. Math. Phys. 57 (2006), 1042-1056. (2006) Zbl1106.35038MR2279256DOI10.1007/s00033-006-0070-9
- Cai, Z., Ye, X., Zhang, S., 10.1137/100805133, SIAM J. Numer. Anal. 49 (2011), 1761-1787. (2011) Zbl1232.65142MR2837483DOI10.1137/100805133
- Ciarlet, P. G., 10.1016/S1570-8659(05)80039-0, In: Part 1. Finite Element Methods. Handbook of Numerical Analysis, Vol. 2 P. Ciarlet, J.-L. Lions North-Holland (1991), 21-343. (1991) Zbl0875.65086MR1115237DOI10.1016/S1570-8659(05)80039-0
- Conca, C., Planchard, J., Vanninathan, M., Fluid and Periodic Structures, John Wiley & Sons Chichester (1995). (1995) MR1652238
- Crouzeix, M., Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. (1973) MR0343661
- Dunford, N., Schwartz, J. T., Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space, Interscience Publishers/John Wiley & Sons New York/London (1963). (1963) MR1009163
- Goerisch, F., Albrecht, J., The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192, Springer Berlin (1986). (1986) MR0877140
- Goerisch, F., He, Z., The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7, Academic Press Boston (1990). (1990) MR1104000
- Han, H. D., Guan, Z., An analysis of the boundary element approximation of Steklov eigenvalue problems, In: Numerical Methods for Partial Differential Equations World Scientific River Edge (1992), 35-51. (1992) MR1160822
- Han, H. D., Guan, Z., He, B., Boundary element approximation of Steklov eigenvalue problem, Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128-135 Chinese. (1994) MR1293212
- Hinton, D. B., Shaw, J. K., Differential operators with spectral parameter incompletely in the boundary conditions, Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. (1990) Zbl0715.34133MR1086767
- Hu, J., Huang, Y., Lin, Q., The analysis of the lower approximation of eigenvalues by nonconforming elements, (to appear).
- Huang, J., Lü, T., The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems, J. Comput. Math. 22 (2004), 719-726. (2004) Zbl1069.65123MR2080438
- Křížek, M., Roos, H.-G., Chen, W., 10.1051/m2an/2011003, ESAIM, Math. Model. Numer. Anal. 45 (2011), 915-924 (2011). (2011) Zbl1269.65113MR2817550DOI10.1051/m2an/2011003
- Li, M., Lin, Q., Zhang, S., 10.1007/s10444-009-9118-7, Adv. Comput. Math. 33 (2010), 25-44. (2010) Zbl1213.65141MR2645290DOI10.1007/s10444-009-9118-7
- Lin, Q., Lin, J., Finite Element Methods: Accuracy and Improvement, Science Press Beijing (2006). (2006)
- Lin, Q., Tobiska, L., Zhou, A., 10.1093/imanum/drh008, IMA J. Numer. Anal. 25 (2005), 160-181. (2005) Zbl1068.65122MR2110239DOI10.1093/imanum/drh008
- Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y., Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory 40 (2010), 157-168. (2010) MR2768711
- Rannacher, R., Turek, S., 10.1002/num.1690080202, Numer. Methods Partial Differ. Equations 8 (1992), 97-111. (1992) Zbl0742.76051MR1148797DOI10.1002/num.1690080202
- Tang, W., Guan, Z., Han, H., Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation, J. Comput. Math. 16 (1998), 165-178. (1998) Zbl0977.65100MR1610674
- Wang, L., Xu, X., Foundation of Mathematics in Finite Element Methods, Scientific and Technical Publishers Beijing (2004). (2004)
- Yang, Y., A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math. 18 (2000), 413-418. (2000) Zbl0957.65092MR1773912
- Yang, Y., Chen, Z., 10.1007/s11425-008-0002-6, Sci. China, Ser. A 51 (2008), 1232-1242. (2008) Zbl1153.65055MR2417491DOI10.1007/s11425-008-0002-6
- Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1212.65435MR2553141DOI10.1016/j.apnum.2009.04.005
- Yang, Y., Bi, H., 10.1016/j.apnum.2010.03.019, Appl. Numer. Math. 60 (2010), 782-787. (2010) Zbl1198.65220MR2647432DOI10.1016/j.apnum.2010.03.019
- Yang, Y., Zhang, Z., Lin, F., 10.1007/s11425-009-0198-0, Sci. China Math. 53 (2010), 137-150. (2010) Zbl1187.65125MR2594754DOI10.1007/s11425-009-0198-0
- Zhang, Z., Yang, Y., Chen, Z., Eigenvalue approximation from below by Wilson's element, Math. Numer. Sin. 29 (2007), 319-321 Chinese. (2007) Zbl1142.65435MR2370469
Citations in EuDML Documents
top- Qin Li, Xuefeng Liu, Explicit finite element error estimates for nonhomogeneous Neumann problems
- Yuping Zeng, Feng Wang, A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
- Yu Zhang, Hai Bi, Yidu Yang, Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.