A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations

Michal Béreš

Applications of Mathematics (2020)

  • Volume: 65, Issue: 2, page 191-225
  • ISSN: 0862-7940

Abstract

top
We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.

How to cite

top

Béreš, Michal. "A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations." Applications of Mathematics 65.2 (2020): 191-225. <http://eudml.org/doc/297115>.

@article{Béreš2020,
abstract = {We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.},
author = {Béreš, Michal},
journal = {Applications of Mathematics},
keywords = {stochastic Galerkin method; reduced basis method; deflated conjugate gradients method; Darcy flow problem},
language = {eng},
number = {2},
pages = {191-225},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations},
url = {http://eudml.org/doc/297115},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Béreš, Michal
TI - A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 191
EP - 225
AB - We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.
LA - eng
KW - stochastic Galerkin method; reduced basis method; deflated conjugate gradients method; Darcy flow problem
UR - http://eudml.org/doc/297115
ER -

References

top
  1. Babuška, I., Nobile, F., Tempone, R., 10.1137/050645142, SIAM J. Numer. Anal. 45 (2007), 1005-1034. (2007) Zbl1151.65008MR2318799DOI10.1137/050645142
  2. Babuška, I., Tempone, R., Zouraris, G. E., 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800-825. (2004) Zbl1080.65003MR2084236DOI10.1137/S0036142902418680
  3. Ballani, J., Grasedyck, L., 10.1002/nla.1818, Numer. Linear Algebra Appl. 20 (2013), 27-43. (2013) Zbl1289.65049MR3007237DOI10.1002/nla.1818
  4. Barth, A., Schwab, C., Zollinger, N., 10.1007/s00211-011-0377-0, Numer. Math. 119 (2011), 123-161. (2011) Zbl1230.65006MR2824857DOI10.1007/s00211-011-0377-0
  5. Benner, P., Onwunta, A., Stoll, M., 10.1137/130937251, SIAM/ASA J. Uncertain. Quantif. 3 (2015), 622-649. (2015) Zbl1325.65016MR3376791DOI10.1137/130937251
  6. Béreš, M., 10.1007/978-3-030-14907-9_18, AETA 2018-Recent Advances in Electrical Engineering and Related Sciences: Theory and Application I. Zelinka et al. Lecture Notes in Electrical Engineering 554, Springer, Cham (2019), 175-184. (2019) DOI10.1007/978-3-030-14907-9_18
  7. Béreš, M., Domesová, S., 10.15598/aeee.v15i2.2280, Advances in Electrical and Electronic Engineering 15 (2017), 13 pages. (2017) DOI10.15598/aeee.v15i2.2280
  8. Bespalov, A., Powell, C. E., Silvester, D., 10.1137/130916849, SIAM J. Sci. Comput. 36 (2014), A339--A363. (2014) Zbl1294.35199MR3177362DOI10.1137/130916849
  9. Bespalov, A., Silvester, D., 10.1137/15M1027048, SIAM J. Sci. Comput. 38 (2016), A2118--A2140. (2016) Zbl1416.65435MR3519560DOI10.1137/15M1027048
  10. Caflisch, R. E., 10.1017/S0962492900002804, Acta Numerica 7 (1998), 1-49. (1998) Zbl0949.65003MR1689431DOI10.1017/S0962492900002804
  11. Chen, C. S., Hon, Y. C., Schaback, R. A., Scientific Computing with Radial Basis Functions, Department of Mathematics, University of Southern Mississippi, Hattiesburg (2005). (2005) 
  12. Chen, Y., Jiang, J., Narayan, A., 10.1016/j.camwa.2018.11.032, Comput. Math. Appl. 77 (2019), 1963-1979. (2019) MR3926856DOI10.1016/j.camwa.2018.11.032
  13. Chen, P., Quarteroni, A., Rozza, G., 10.1007/s10915-013-9764-2, J. Sci. Comput. 59 (2014), 187-216. (2014) Zbl1301.65007MR3167732DOI10.1007/s10915-013-9764-2
  14. Chen, P., Quarteroni, A., Rozza, G., 10.1137/151004550, SIAM/ASA J. Uncertain. Quantif. 5 (2017), 813-869. (2017) Zbl1400.65010MR3687858DOI10.1137/151004550
  15. Christakos, G., 10.1016/C2009-0-22238-0, Academic Press, San Diego (1992). (1992) DOI10.1016/C2009-0-22238-0
  16. Cliffe, K. A., Giles, M. B., Scheichl, R., Teckentrup, A. L., 10.1007/s00791-011-0160-x, Comput. Vis. Sci. 14 (2011), 3-15. (2011) Zbl1241.65012MR2835612DOI10.1007/s00791-011-0160-x
  17. Crowder, A. J., Powell, C. E., 10.1007/s10915-018-0736-4, J. Sci. Comput. 77 (2018), 1030-1054. (2018) Zbl1404.65257MR3860199DOI10.1007/s10915-018-0736-4
  18. Dolgov, S., Khoromskij, B. N., Litvinenko, A., Matthies, H. G., 10.1137/140972536, SIAM/ASA J. Uncertain. Quantif. 3 (2015), 1109-1135. (2015) Zbl1329.65271MR3418232DOI10.1137/140972536
  19. Elman, H. C., Su, T., 10.1137/17M1125170, SIAM J. Matrix Anal. Appl. 39 (2018), 492-509. (2018) Zbl1390.35437MR3775135DOI10.1137/17M1125170
  20. Freeze, R. A., 10.1029/WR011i005p00725, Water Resources Research 11 (1975), 725-741. (1975) DOI10.1029/WR011i005p00725
  21. Gittelson, C. J., 10.1142/S0218202510004210, Math. Models Methods Appl. Sci. 20 (2010), 237-263. (2010) Zbl1339.65216MR2649152DOI10.1142/S0218202510004210
  22. Güttel, S., 10.1002/gamm.201310002, GAMM-Mitt. 36 (2013), 8-31. (2013) Zbl1292.65043MR3095912DOI10.1002/gamm.201310002
  23. Heiss, F., Winschel, V., 10.1016/j.jeconom.2007.12.004, J. Econom. 144 (2008), 62-80. (2008) Zbl1418.62466MR2439922DOI10.1016/j.jeconom.2007.12.004
  24. Hoeksema, R. J., Kitanidis, P. K., 10.1029/WR021i004p00563, Water Resources Research 21 (1985), 563-572. (1985) DOI10.1029/WR021i004p00563
  25. Karypis, G., Kumar, V., 10.1137/S1064827595287997, SIAM J. Sci. Comput. 20 (1998), 359-392. (1998) Zbl0915.68129MR1639073DOI10.1137/S1064827595287997
  26. Keese, A., Mathhies, H. G., Adaptivity and sensitivity for stochastic problems, Computational Stochastic Mechanics 4 P. D. Spanos et al. Millpress, Rotterdam (2003), 311-316. (2003) 
  27. Khoromskij, B. N., Schwab, C., 10.1137/100785715, SIAM J. Sci. Comput. 33 (2011), 364-385. (2011) Zbl1243.65009MR2783199DOI10.1137/100785715
  28. Kroese, D. P., Taimre, T., Botev, Z. I., 10.1002/9781118014967, Wiley Series in Probability and Statistics, Wiley, Hoboken (2011). (2011) Zbl1213.65001DOI10.1002/9781118014967
  29. Lee, K., Elman, H. C., 10.1137/16M1075582, SIAM J. Sci. Comput. 39 (2017), S828--S850. (2017) Zbl1373.60126MR3716585DOI10.1137/16M1075582
  30. Lord, G. J., Powell, C. E., Shardlow, T., 10.1017/CBO9781139017329, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2014). (2014) Zbl1327.60011MR3308418DOI10.1017/CBO9781139017329
  31. Mathelin, L., tre, O. Le Maî, 10.2140/camcos.2007.2.83, Commun. Appl. Math. Comput. Sci. 2 (2007), 83-115. (2007) Zbl1131.65003MR2369381DOI10.2140/camcos.2007.2.83
  32. Matthies, H. G., Zander, E., 10.1016/j.laa.2011.04.017, Linear Algebra Appl. 436 (2012), 3819-3838. (2012) Zbl1241.65016MR2914549DOI10.1016/j.laa.2011.04.017
  33. Nelson, P. H., Permeability-porosity relationships in sedimentary rocks, Log Analyst 35 (1994), 38-62. (1994) 
  34. Newsum, C. J., Powell, C. E., 10.1137/16M1108856, SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1248-1278. (2017) Zbl1398.65282MR3732952DOI10.1137/16M1108856
  35. Nobile, F., Tempone, R., Webster, C. G., 10.1137/060663660, SIAM J. Numer. Anal. 46 (2008), 2309-2345. (2008) Zbl1176.65137MR2421037DOI10.1137/060663660
  36. Nouy, A., 10.1016/j.cma.2007.05.016, Comput. Methods Appl. Mech. Eng. 196 (2007), 4521-4537. (2007) Zbl1173.80311MR2354451DOI10.1016/j.cma.2007.05.016
  37. Nouy, A., 10.1051/meca:2007050, Mecanique et Industries 8 (2007), 283-288. (2007) DOI10.1051/meca:2007050
  38. Nouy, A., 10.1016/j.cma.2008.06.012, Comput. Methods Appl. Mech. Eng. 197 (2008), 4718-4736. (2008) Zbl1194.74458MR2464512DOI10.1016/j.cma.2008.06.012
  39. Nouy, A., 10.1007/s11831-009-9034-5, Arch. Comput. Methods Eng. 16 (2009), 251-285. (2009) Zbl1360.65036MR2533492DOI10.1007/s11831-009-9034-5
  40. Nouy, A., 10.1007/s11831-010-9054-1, Arch. Comput. Methods Eng. 17 (2010), 403-434. (2010) Zbl1269.76079MR2739946DOI10.1007/s11831-010-9054-1
  41. Nouy, A., Maitre, O. P. Le, 10.1016/j.jcp.2008.09.010, J. Comput. Phys. 228 (2009), 202-235. (2009) Zbl1157.65009MR2464076DOI10.1016/j.jcp.2008.09.010
  42. Petras, K., 10.1007/s002110200401, Numer. Math. 93 (2003), 729-753. (2003) Zbl1024.65023MR1961886DOI10.1007/s002110200401
  43. Powell, M. J. D., Radial basis function methods for interpolation to functions of many variables, HERCMA 2001. Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and Its Applications E. A. Lipitakis LEA, Athens (2002), 2-24. (2002) Zbl1048.65502
  44. Powell, C. E., Elman, H. C., 10.1093/imanum/drn014, IMA J. Numer. Anal. 29 (2009), 350-375. (2009) Zbl1169.65007MR2491431DOI10.1093/imanum/drn014
  45. Powell, C. E., Silvester, D., Simoncini, V., 10.1137/15M1032399, SIAM J. Sci. Comput. 39 (2017), A141--A163. (2017) Zbl1381.35257MR3594329DOI10.1137/15M1032399
  46. Pultarová, I., 10.1007/s10492-015-0111-9, Appl. Math., Praha 60 (2015), 551-571. (2015) Zbl1363.65005MR3396480DOI10.1007/s10492-015-0111-9
  47. Pultarová, I., 10.1016/j.camwa.2016.01.006, Comput. Math. Appl. 71 (2016), 949-964. (2016) MR3461271DOI10.1016/j.camwa.2016.01.006
  48. Robert, C. P., Casella, G., 10.1007/978-1-4757-4145-2, Springer Texts in Statistics, Springer, New York (2004). (2004) Zbl1096.62003MR2080278DOI10.1007/978-1-4757-4145-2
  49. Saad, Y., Yeung, M., Erhel, J., Guyomarc'h, F., 10.1137/S1064829598339761, SIAM J. Sci. Comput. 21 (2000), 1909-1926. (2000) Zbl0955.65021MR1766015DOI10.1137/S1064829598339761
  50. Santner, T. J., Williams, B. J., Notz, W. I., 10.1007/978-1-4757-3799-8, Springer Series in Statistics, Springer, New York (2003). (2003) Zbl1041.62068MR2160708DOI10.1007/978-1-4757-3799-8
  51. Simoncini, V., 10.1137/16M1059382, SIAM J. Matrix Anal. Appl. 37 (2016), 1655-1674. (2016) Zbl06655499MR3570279DOI10.1137/16M1059382
  52. Sousedík, B., Ghanem, R. G., Phipps, E. T., 10.1002/nla.1869, Numer. Linear Algebra Appl. 21 (2014), 136-151. (2014) Zbl1324.65045MR3150614DOI10.1002/nla.1869
  53. Ullmann, E., 10.1137/080742853, SIAM J. Sci. Comput. 32 (2010), 923-946. (2010) Zbl1210.35306MR2639600DOI10.1137/080742853
  54. Ullmann, S., Lang, J., Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs, Available at https://arxiv.org/abs/1812.08519 (2018), 20 pages. (2018) 
  55. Wan, X., Karniadakis, G. E., 10.1016/j.jcp.2005.03.023, J. Comput. Phys. 209 (2005), 617-642. (2005) Zbl1078.65008MR2151997DOI10.1016/j.jcp.2005.03.023
  56. Xiu, D., 10.1515/9781400835348, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.1515/9781400835348

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.