Generalized Schröder matrices arising from enumeration of lattice paths
Lin Yang; Sheng-Liang Yang; Tian-Xiao He
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 411-433
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Lin, Yang, Sheng-Liang, and He, Tian-Xiao. "Generalized Schröder matrices arising from enumeration of lattice paths." Czechoslovak Mathematical Journal 70.2 (2020): 411-433. <http://eudml.org/doc/297124>.
@article{Yang2020,
abstract = {We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D^\{\prime \} = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.},
author = {Yang, Lin, Yang, Sheng-Liang, He, Tian-Xiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix},
language = {eng},
number = {2},
pages = {411-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Schröder matrices arising from enumeration of lattice paths},
url = {http://eudml.org/doc/297124},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Yang, Lin
AU - Yang, Sheng-Liang
AU - He, Tian-Xiao
TI - Generalized Schröder matrices arising from enumeration of lattice paths
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 411
EP - 433
AB - We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D^{\prime } = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.
LA - eng
KW - Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix
UR - http://eudml.org/doc/297124
ER -
References
top- Aigner, M., 10.1016/j.disc.2007.06.012, Discrete Math. 308 (2008), 2544-2563. (2008) Zbl1147.05002MR2410460DOI10.1016/j.disc.2007.06.012
- Barry, P., On the central coefficients of Riordan matrices, J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. (2013) Zbl1310.11032MR3065330
- Bonin, J., Shapiro, L., Simion, R., 10.1016/0378-3758(93)90032-2, J. Stat. Plann. Inference 34 (1993), 35-55. (1993) Zbl0783.05008MR1209988DOI10.1016/0378-3758(93)90032-2
- Chen, X., Liang, H., Wang, Y., 10.1016/j.ejc.2014.11.009, Eur. J. Comb. 46 (2015), 68-74. (2015) Zbl1307.05010MR3305345DOI10.1016/j.ejc.2014.11.009
- Cheon, G.-S., Kim, H., Shapiro, L. W., 10.1016/j.disc.2012.03.023, Discrete Math. 312 (2012), 2040-2049. (2012) Zbl1243.05007MR2920864DOI10.1016/j.disc.2012.03.023
- Comtet, L., 10.1007/978-94-010-2196-8, D. Reidel Publishing, Dordrecht (1974). (1974) Zbl0283.05001MR0460128DOI10.1007/978-94-010-2196-8
- Deutsch, E., 10.1016/S0012-365X(01)00122-4, Discrete Math. 241 (2001), 235-240. (2001) Zbl0992.05010MR1861420DOI10.1016/S0012-365X(01)00122-4
- Deutsch, E., Munarini, E., Rinaldi, S., 10.1016/j.jspi.2010.01.015, J. Stat. Plann. Inference 140 (2010), 2191-2203. (2010) Zbl1232.05010MR2609478DOI10.1016/j.jspi.2010.01.015
- Dziemiańczuk, M., 10.1007/s00373-013-1357-1, Graphs Comb. 30 (2014), 1427-1452. (2014) Zbl1306.05007MR3268642DOI10.1007/s00373-013-1357-1
- He, T.-X., 10.1016/j.laa.2012.10.001, Linear Algebra Appl. 438 (2013), 1467-1484. (2013) Zbl1257.05003MR2997825DOI10.1016/j.laa.2012.10.001
- Humphreys, K., 10.1016/j.jspi.2010.01.020, J. Stat. Plann. Inference 140 (2010), 2237-2254. (2010) Zbl1204.05015MR2609483DOI10.1016/j.jspi.2010.01.020
- Luzón, A., Merlini, D., Morón, M., Sprugnoli, R., 10.1016/j.laa.2011.08.007, Linear Algebra Appl. 436 (2011), 631-647. (2011) Zbl1232.05011MR2854896DOI10.1016/j.laa.2011.08.007
- Mansour, T., Schork, M., Sun, Y., Motzkin numbers of higher ranks: Generating function and explicit expression, J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. (2007) Zbl1141.05308MR2322499
- Merlini, D., 10.1016/j.dam.2007.08.051, Discrete Appl. Math. 156 (2008), 627-646. (2008) Zbl1136.05002MR2397210DOI10.1016/j.dam.2007.08.051
- Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C., 10.4153/CJM-1997-015-x, Can. J. Math. 49 (1997), 301-320. (1997) Zbl0886.05013MR1447493DOI10.4153/CJM-1997-015-x
- Merlini, D., Sprugnoli, R., 10.1016/j.tcs.2010.07.019, Theor. Comput. Sci. 412 (2011), 2988-3001. (2011) Zbl1220.68079MR2830262DOI10.1016/j.tcs.2010.07.019
- Niederhausen, H., Inverses of Motzkin and Schröder paths, Integers 12 (2012), Article ID A49, 19 pages. (2012) Zbl1290.05011MR3083422
- Nkwanta, A., Shapiro, L. W., Pell walks and Riordan matrices, Fibonacci Q. 43 (2005), 170-180. (2005) Zbl1074.60053MR2147953
- Pergola, E., Sulanke, R. A., Schröder triangles, paths, and parallelogram polyominoes, J. Integer Seq. 1 (1998), Article 98.1.7. (1998) Zbl0974.05003MR1677075
- Ramírez, J. L., Sirvent, V. F., 10.1080/03081087.2017.1301360, Linear Multilinear Algebra 66 (2018), 418-433. (2018) Zbl1387.15004MR3750599DOI10.1080/03081087.2017.1301360
- Rogers, D. G., 10.1007/BFb0069192, Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. (1977) Zbl0368.05004MR0462964DOI10.1007/BFb0069192
- Rogers, D. G., Shapiro, L. W., 10.1007/BFb0062541, Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). (1978) MR0526754DOI10.1007/BFb0062541
- Schröder, E., Vier kombinatorische probleme, Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German 9999JFM99999 02.0108.04. (1870)
- Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C., 10.1016/0166-218X(91)90088-E, Discrete Appl. Math. 34 (1991), 229-239. (1991) Zbl0754.05010MR1137996DOI10.1016/0166-218X(91)90088-E
- Sloane, N. J. A., On-line Encyclopedia of Integer Sequences (OEIS), Available at https://oeis.org (2018). MR3822822
- Song, C., The generalized Schröder theory, Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. (2005) Zbl1077.05010MR2176529
- Sprugnoli, R., 10.1016/0012-365X(92)00570-H, Discrete Math. 132 (1994), 267-290. (1994) Zbl0814.05003MR1297386DOI10.1016/0012-365X(92)00570-H
- Stanley, R. P., 10.2307/2974582, Am. Math. Mon. 104 (1997), 344-350. (1997) Zbl0873.01002MR1450667DOI10.2307/2974582
- Stanley, R. P., 10.1017/CBO9780511609589, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). (1999) Zbl0928.05001MR1676282DOI10.1017/CBO9780511609589
- Sulanke, R. A., 10.37236/1385, Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. (1998) Zbl0913.05007MR1661185DOI10.37236/1385
- Woan, W.-J., A relation between restricted and unrestricted weighted Motzkin paths, J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. (2006) Zbl1101.05008MR2188940
- Yang, S.-L., Dong, Y.-N., He, T.-X., 10.1016/j.disc.2017.07.006, Discrete Math. 340 (2017), 3081-3091. (2017) Zbl1370.05114MR3698097DOI10.1016/j.disc.2017.07.006
- Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J., 10.1016/j.laa.2017.09.027, Linear Algebra Appl. 537 (2018), 1-11. (2018) Zbl1373.05007MR3716232DOI10.1016/j.laa.2017.09.027
- Yang, S.-L., Xu, Y.-X., He, T.-X., 10.21136/CMJ.2017.0165-16, Czech. Math. J. 67 (2017), 919-936. (2017) Zbl06819563MR3736009DOI10.21136/CMJ.2017.0165-16
- Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X., 10.1016/j.laa.2013.09.044, Linear Algebra Appl. 439 (2013), 3605-3614. (2013) Zbl1283.15098MR3119875DOI10.1016/j.laa.2013.09.044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.