Generalized Schröder matrices arising from enumeration of lattice paths

Lin Yang; Sheng-Liang Yang; Tian-Xiao He

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 411-433
  • ISSN: 0011-4642

Abstract

top
We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps E = ( 1 , 0 ) , D = ( 1 , 1 ) , N = ( 0 , 1 ) , and D ' = ( 1 , 2 ) and not going above the line y = x . We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.

How to cite

top

Yang, Lin, Yang, Sheng-Liang, and He, Tian-Xiao. "Generalized Schröder matrices arising from enumeration of lattice paths." Czechoslovak Mathematical Journal 70.2 (2020): 411-433. <http://eudml.org/doc/297124>.

@article{Yang2020,
abstract = {We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D^\{\prime \} = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.},
author = {Yang, Lin, Yang, Sheng-Liang, He, Tian-Xiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix},
language = {eng},
number = {2},
pages = {411-433},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized Schröder matrices arising from enumeration of lattice paths},
url = {http://eudml.org/doc/297124},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Yang, Lin
AU - Yang, Sheng-Liang
AU - He, Tian-Xiao
TI - Generalized Schröder matrices arising from enumeration of lattice paths
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 411
EP - 433
AB - We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D^{\prime } = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.
LA - eng
KW - Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix
UR - http://eudml.org/doc/297124
ER -

References

top
  1. Aigner, M., 10.1016/j.disc.2007.06.012, Discrete Math. 308 (2008), 2544-2563. (2008) Zbl1147.05002MR2410460DOI10.1016/j.disc.2007.06.012
  2. Barry, P., On the central coefficients of Riordan matrices, J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. (2013) Zbl1310.11032MR3065330
  3. Bonin, J., Shapiro, L., Simion, R., 10.1016/0378-3758(93)90032-2, J. Stat. Plann. Inference 34 (1993), 35-55. (1993) Zbl0783.05008MR1209988DOI10.1016/0378-3758(93)90032-2
  4. Chen, X., Liang, H., Wang, Y., 10.1016/j.ejc.2014.11.009, Eur. J. Comb. 46 (2015), 68-74. (2015) Zbl1307.05010MR3305345DOI10.1016/j.ejc.2014.11.009
  5. Cheon, G.-S., Kim, H., Shapiro, L. W., 10.1016/j.disc.2012.03.023, Discrete Math. 312 (2012), 2040-2049. (2012) Zbl1243.05007MR2920864DOI10.1016/j.disc.2012.03.023
  6. Comtet, L., 10.1007/978-94-010-2196-8, D. Reidel Publishing, Dordrecht (1974). (1974) Zbl0283.05001MR0460128DOI10.1007/978-94-010-2196-8
  7. Deutsch, E., 10.1016/S0012-365X(01)00122-4, Discrete Math. 241 (2001), 235-240. (2001) Zbl0992.05010MR1861420DOI10.1016/S0012-365X(01)00122-4
  8. Deutsch, E., Munarini, E., Rinaldi, S., 10.1016/j.jspi.2010.01.015, J. Stat. Plann. Inference 140 (2010), 2191-2203. (2010) Zbl1232.05010MR2609478DOI10.1016/j.jspi.2010.01.015
  9. Dziemiańczuk, M., 10.1007/s00373-013-1357-1, Graphs Comb. 30 (2014), 1427-1452. (2014) Zbl1306.05007MR3268642DOI10.1007/s00373-013-1357-1
  10. He, T.-X., 10.1016/j.laa.2012.10.001, Linear Algebra Appl. 438 (2013), 1467-1484. (2013) Zbl1257.05003MR2997825DOI10.1016/j.laa.2012.10.001
  11. Humphreys, K., 10.1016/j.jspi.2010.01.020, J. Stat. Plann. Inference 140 (2010), 2237-2254. (2010) Zbl1204.05015MR2609483DOI10.1016/j.jspi.2010.01.020
  12. Luzón, A., Merlini, D., Morón, M., Sprugnoli, R., 10.1016/j.laa.2011.08.007, Linear Algebra Appl. 436 (2011), 631-647. (2011) Zbl1232.05011MR2854896DOI10.1016/j.laa.2011.08.007
  13. Mansour, T., Schork, M., Sun, Y., Motzkin numbers of higher ranks: Generating function and explicit expression, J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. (2007) Zbl1141.05308MR2322499
  14. Merlini, D., 10.1016/j.dam.2007.08.051, Discrete Appl. Math. 156 (2008), 627-646. (2008) Zbl1136.05002MR2397210DOI10.1016/j.dam.2007.08.051
  15. Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C., 10.4153/CJM-1997-015-x, Can. J. Math. 49 (1997), 301-320. (1997) Zbl0886.05013MR1447493DOI10.4153/CJM-1997-015-x
  16. Merlini, D., Sprugnoli, R., 10.1016/j.tcs.2010.07.019, Theor. Comput. Sci. 412 (2011), 2988-3001. (2011) Zbl1220.68079MR2830262DOI10.1016/j.tcs.2010.07.019
  17. Niederhausen, H., Inverses of Motzkin and Schröder paths, Integers 12 (2012), Article ID A49, 19 pages. (2012) Zbl1290.05011MR3083422
  18. Nkwanta, A., Shapiro, L. W., Pell walks and Riordan matrices, Fibonacci Q. 43 (2005), 170-180. (2005) Zbl1074.60053MR2147953
  19. Pergola, E., Sulanke, R. A., Schröder triangles, paths, and parallelogram polyominoes, J. Integer Seq. 1 (1998), Article 98.1.7. (1998) Zbl0974.05003MR1677075
  20. Ramírez, J. L., Sirvent, V. F., 10.1080/03081087.2017.1301360, Linear Multilinear Algebra 66 (2018), 418-433. (2018) Zbl1387.15004MR3750599DOI10.1080/03081087.2017.1301360
  21. Rogers, D. G., 10.1007/BFb0069192, Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. (1977) Zbl0368.05004MR0462964DOI10.1007/BFb0069192
  22. Rogers, D. G., Shapiro, L. W., 10.1007/BFb0062541, Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). (1978) MR0526754DOI10.1007/BFb0062541
  23. Schröder, E., Vier kombinatorische probleme, Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German 9999JFM99999 02.0108.04. (1870) 
  24. Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C., 10.1016/0166-218X(91)90088-E, Discrete Appl. Math. 34 (1991), 229-239. (1991) Zbl0754.05010MR1137996DOI10.1016/0166-218X(91)90088-E
  25. Sloane, N. J. A., On-line Encyclopedia of Integer Sequences (OEIS), Available at https://oeis.org (2018). MR3822822
  26. Song, C., The generalized Schröder theory, Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. (2005) Zbl1077.05010MR2176529
  27. Sprugnoli, R., 10.1016/0012-365X(92)00570-H, Discrete Math. 132 (1994), 267-290. (1994) Zbl0814.05003MR1297386DOI10.1016/0012-365X(92)00570-H
  28. Stanley, R. P., 10.2307/2974582, Am. Math. Mon. 104 (1997), 344-350. (1997) Zbl0873.01002MR1450667DOI10.2307/2974582
  29. Stanley, R. P., 10.1017/CBO9780511609589, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). (1999) Zbl0928.05001MR1676282DOI10.1017/CBO9780511609589
  30. Sulanke, R. A., 10.37236/1385, Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. (1998) Zbl0913.05007MR1661185DOI10.37236/1385
  31. Woan, W.-J., A relation between restricted and unrestricted weighted Motzkin paths, J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. (2006) Zbl1101.05008MR2188940
  32. Yang, S.-L., Dong, Y.-N., He, T.-X., 10.1016/j.disc.2017.07.006, Discrete Math. 340 (2017), 3081-3091. (2017) Zbl1370.05114MR3698097DOI10.1016/j.disc.2017.07.006
  33. Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J., 10.1016/j.laa.2017.09.027, Linear Algebra Appl. 537 (2018), 1-11. (2018) Zbl1373.05007MR3716232DOI10.1016/j.laa.2017.09.027
  34. Yang, S.-L., Xu, Y.-X., He, T.-X., 10.21136/CMJ.2017.0165-16, Czech. Math. J. 67 (2017), 919-936. (2017) Zbl06819563MR3736009DOI10.21136/CMJ.2017.0165-16
  35. Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X., 10.1016/j.laa.2013.09.044, Linear Algebra Appl. 439 (2013), 3605-3614. (2013) Zbl1283.15098MR3119875DOI10.1016/j.laa.2013.09.044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.