-central Riordan arrays and their applications
Sheng-Liang Yang; Yan-Xue Xu; Tian-Xiao He
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 919-936
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Sheng-Liang, Xu, Yan-Xue, and He, Tian-Xiao. "$(m,r)$-central Riordan arrays and their applications." Czechoslovak Mathematical Journal 67.4 (2017): 919-936. <http://eudml.org/doc/294691>.
@article{Yang2017,
abstract = {For integers $m > r \ge 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_\{n,k\})_\{n,k \in \mathbb \{N\}\}$ as $ d_\{mn+r,(m-1)n+r\}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as \[ G^\{(m,r)\} = (d\_\{mn+r,(m-1)n+k+r\})\_\{n,k \in \mathbb \{N\}\}. \]
It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h^\{\prime \}(0)\ne 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^\{(m,r)\}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.},
author = {Yang, Sheng-Liang, Xu, Yan-Xue, He, Tian-Xiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riordan array; central coefficient; central Riordan array; generating function; Fuss-Catalan number; Pascal matrix; Catalan matrix},
language = {eng},
number = {4},
pages = {919-936},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$(m,r)$-central Riordan arrays and their applications},
url = {http://eudml.org/doc/294691},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Yang, Sheng-Liang
AU - Xu, Yan-Xue
AU - He, Tian-Xiao
TI - $(m,r)$-central Riordan arrays and their applications
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 919
EP - 936
AB - For integers $m > r \ge 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_{n,k})_{n,k \in \mathbb {N}}$ as $ d_{mn+r,(m-1)n+r}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as \[ G^{(m,r)} = (d_{mn+r,(m-1)n+k+r})_{n,k \in \mathbb {N}}. \]
It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h^{\prime }(0)\ne 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^{(m,r)}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
LA - eng
KW - Riordan array; central coefficient; central Riordan array; generating function; Fuss-Catalan number; Pascal matrix; Catalan matrix
UR - http://eudml.org/doc/294691
ER -
References
top- Andrews, G. H., Some formulae for the Fibonacci sequence with generalizations, Fibonacci Q. 7 (1969), 113-130. (1969) Zbl0176.32202MR0242761
- Barry, P., On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. (2006) Zbl1178.11023MR2217230
- Barry, P., On the central coefficients of Bell matrices, J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. (2011) Zbl1231.11029MR2792159
- Barry, P., On the central coefficients of Riordan matrices, J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. (2013) Zbl1310.11032MR3065330
- Brietzke, E. H. M., 10.1016/j.disc.2007.08.050, Discrete Math. 308 (2008), 4246-4262. (2008) Zbl1207.05010MR2427755DOI10.1016/j.disc.2007.08.050
- Cheon, G.-S., Jin, S.-T., 10.1016/j.laa.2011.04.001, Linear Algebra Appl. 435 (2011), 2019-2032. (2011) Zbl1226.05021MR2810643DOI10.1016/j.laa.2011.04.001
- Cheon, G.-S., Kim, H., Shapiro, L. W., 10.1016/j.disc.2012.03.023, Discrete Math. 312 (2012), 2040-2049. (2012) Zbl1243.05007MR2920864DOI10.1016/j.disc.2012.03.023
- Comtet, L., 10.1007/978-94-010-2196-8, D. Reidel Publishing, Dordrecht (1974). (1974) Zbl0283.05001MR0460128DOI10.1007/978-94-010-2196-8
- Graham, R. L., Knuth, D. E., Patashnik, O., Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley Publishing Company, Reading (1989). (1989) Zbl0668.00003MR1001562
- He, T.-X., 10.1016/j.laa.2012.10.001, Linear Algebra Appl. 438 (2013), 1467-1484. (2013) Zbl1257.05003MR2997825DOI10.1016/j.laa.2012.10.001
- He, T.-X., 10.1016/j.laa.2014.09.008, Linear Algebra Appl. 465 (2015), 15-42. (2015) Zbl1303.05007MR3274660DOI10.1016/j.laa.2014.09.008
- He, T.-X., Sprugnoli, R., 10.1016/j.disc.2008.11.021, Discrete Math. 309 (2009), 3962-3974. (2009) Zbl1228.05014MR2537389DOI10.1016/j.disc.2008.11.021
- Kruchinin, D., Kruchinin, V., A method for obtaining generating functions for central coefficients of triangles, J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. (2012) Zbl1292.05028MR3005529
- Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C., 10.4153/CJM-1997-015-x, Can. J. Math. 49 (1997), 301-320. (1997) Zbl0886.05013MR1447493DOI10.4153/CJM-1997-015-x
- Merlini, D., Sprugnoli, R., Verri, M. C., 10.1007/s10440-006-9077-7, Acta Appl. Math. 94 (2006), 233-249. (2006) Zbl1108.05008MR2290868DOI10.1007/s10440-006-9077-7
- Młotkowski, W., Fuss-Catalan numbers in noncommutative probability, Doc. Math., J. DMV 15 (2010), 939-955. (2010) Zbl1213.44004MR2745687
- Rogers, D. G., 10.1016/0012-365X(78)90063-8, Discrete Math. 22 (1978), 301-310. (1978) Zbl0398.05007MR0522725DOI10.1016/0012-365X(78)90063-8
- Shapiro, L. W., 10.1016/0012-365X(76)90009-1, Discrete Math. 14 (1976), 83-90. (1976) Zbl0323.05004MR0387069DOI10.1016/0012-365X(76)90009-1
- Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C., 10.1016/0166-218X(91)90088-E, Discrete Appl. Math. 34 (1991), 229-239. (1991) Zbl0754.05010MR1137996DOI10.1016/0166-218X(91)90088-E
- Sprugnoli, R., 10.1016/0012-365X(92)00570-H, Discrete Math. 132 (1994), 267-290. (1994) Zbl0814.05003MR1297386DOI10.1016/0012-365X(92)00570-H
- Stanley, R. P., 10.1017/CBO9780511609589, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). (1999) Zbl0928.05001MR1676282DOI10.1017/CBO9780511609589
- Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X., 10.1016/j.laa.2013.09.044, Linear Algebra Appl. 439 (2013), 3605-3614. (2013) Zbl1283.15098MR3119875DOI10.1016/j.laa.2013.09.044
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.