Locally functionally countable subalgebra of
M. Elyasi; A. A. Estaji; M. Robat Sarpoushi
Archivum Mathematicum (2020)
- Volume: 056, Issue: 3, page 127-140
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topElyasi, M., Estaji, A. A., and Robat Sarpoushi, M.. "Locally functionally countable subalgebra of $\mathcal {R}(L)$." Archivum Mathematicum 056.3 (2020): 127-140. <http://eudml.org/doc/297169>.
@article{Elyasi2020,
abstract = {Let $L_c(X)= \lbrace f \in C(X) \colon \overline\{C_f\}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal \{R\}_\{\ell c\}(L)$. We observe that $\mathcal \{R\}_\{\ell c\}(L)$ enjoys most of the important properties shared by $\mathcal \{R\}(L)$ and $\mathcal \{R\}_c(L)$, where $\mathcal \{R\}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal \{R\}(L)$, $\mathcal \{R\}_\{\ell c\}(L)$, and $\mathcal \{R\}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal \{R\}_\{\ell c\}\big (\mathfrak \{O\}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal \{R\}_\{\ell c\}(L)=\mathcal \{R\}(L)$ are characterized.},
author = {Elyasi, M., Estaji, A. A., Robat Sarpoushi, M.},
journal = {Archivum Mathematicum},
keywords = {functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame},
language = {eng},
number = {3},
pages = {127-140},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Locally functionally countable subalgebra of $\mathcal \{R\}(L)$},
url = {http://eudml.org/doc/297169},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Elyasi, M.
AU - Estaji, A. A.
AU - Robat Sarpoushi, M.
TI - Locally functionally countable subalgebra of $\mathcal {R}(L)$
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 127
EP - 140
AB - Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal {R}_{\ell c}(L)$. We observe that $\mathcal {R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal {R}(L)$ and $\mathcal {R}_c(L)$, where $\mathcal {R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal {R}(L)$, $\mathcal {R}_{\ell c}(L)$, and $\mathcal {R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal {R}_{\ell c}\big (\mathfrak {O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal {R}_{\ell c}(L)=\mathcal {R}(L)$ are characterized.
LA - eng
KW - functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
UR - http://eudml.org/doc/297169
ER -
References
top- Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R., 10.1216/RMJ-2018-48-2-345, Rocky Mountain J. Math. 48 (2) (2018), 354–384, http://doi.org/10.1216/RMJ-2018-48-2-345. (2018) MR3809150DOI10.1216/RMJ-2018-48-2-345
- Ball, R.N., Walters-Wayland, J., - and - quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412 (2002), 354–384. (2002) MR1952051
- Banaschewski, B., The real numbers in pointfree topology, Textos de Mathemática (Séries B), Universidade de Coimbra, Departamento de Mathemática, Coimbra 12 (1997), 1–96. (1997) Zbl0891.54009MR1621835
- Bhattacharjee, P., Knox, M.L., Mcgovern, W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2) (2014), 147–154, https://doi.org/10.4995/agt.2014.3181. (2014) MR3267269DOI10.4995/agt.2014.3181
- Dowker, C.H., On Urysohn’s lemma, General Topology and its Relations to Modern Analysis, Proceedings of the second Prague topological symposium, 1966, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 111–114. (1967) MR0238744
- Estaji, A.A., Karimi Feizabadi, A., Robat Sarpoushi, M., 10.2298/FIL1819741E, Filomat 32 (19) (2018), 6741–6752, https://doi.org/10.2298/FIL1819741E. (2018) MR3899307DOI10.2298/FIL1819741E
- Estaji, A.A., Karimi Feizabadi, A., Zarghani, M., Zero elements and -ideals in modified pointfree topology, Bull. Iranian Math. Soc. 43 (7) (2017), 2205–2226. (2017) MR3885660
- Estaji, A.A., Robat Sarpoushi, M., On -frames, submitted.
- Estaji, A.A., Robat Sarpoushi, M., Elyasi, M., 10.1007/s00012-019-0619-z, Algebra Universalis 80 (4) (2019), 14, https: //doi.org/10.1007/s00012-019-0619-z 4. (2019) MR4027118DOI10.1007/s00012-019-0619-z
- Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M., 10.4171/RSMUP/129-4, Rend. Semin. Mat. Univ. Padova 129 (2013), 47–69, https://doi.org/10.4171/RSMUP/129-4. (2013) MR3090630DOI10.4171/RSMUP/129-4
- Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M., 10.1007/s41980-018-0124-8, Bull. Iranian Math. Soc. 45 (2019), 173–187, https://doi.org/10.1007/s41980-018-0124-8. (2019) MR3913987DOI10.1007/s41980-018-0124-8
- Gillman, L., Jerison, M., Rings of Continuous Functions, Springer-Verlag, 1976. (1976) Zbl0327.46040MR0407579
- Johnstone, P.T., Stone Spaces, Cambridge Univ. Press, Cambridge, 1982. (1982) Zbl0499.54001MR0698074
- Karamzadeh, O.A.S., Keshtkar, Z., 10.2989/16073606.2018.1441919, Quaest. Math. 42 (8) (2018), 1135–1167, https://doi.org/10.2989/16073606.2018.1441919. (2018) MR3885948DOI10.2989/16073606.2018.1441919
- Karamzadeh, O.A.S., Namdari, M., Soltanpour, S., 10.4995/agt.2015.3445, Appl. Gen. Topol. 16 (2015), 183–207, https://doi.org/10.4995/agt.2015.3445. (2015) MR3411461DOI10.4995/agt.2015.3445
- Karimi Feizabadi, A., Estaji, A.A., Robat Sarpoushi, M., Pointfree version of image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl. 9 (1) (2018), 59–75. (2018) MR3833111
- Mehri, R., Mohamadian, R., 10.15672/HJMS.2017.435, Hacet. J. Math. Stat. 46 (6) (2017), 1053–1068, http://doi.org/10.15672/HJMS.2017.435. (2017) MR3751773DOI10.15672/HJMS.2017.435
- Namdari, M., Veisi, A., Rings of quotients of the subalgebra of consisting of functions with countable image, Int. Math. Forum 7 (12) (2012), 561–571. (2012) MR2969547
- Picado, J., Pultr, A., Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012. (2012) MR2868166
- Robat Sarpoushi, M., Pointfree topology version of continuous functions with countable image, Hakim Sabzevari University, Sabzevar, Iran (2017), Phd. Thesis. (2017)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.