Locally functionally countable subalgebra of ( L )

M. Elyasi; A. A. Estaji; M. Robat Sarpoushi

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 3, page 127-140
  • ISSN: 0044-8753

Abstract

top
Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.

How to cite

top

Elyasi, M., Estaji, A. A., and Robat Sarpoushi, M.. "Locally functionally countable subalgebra of $\mathcal {R}(L)$." Archivum Mathematicum 056.3 (2020): 127-140. <http://eudml.org/doc/297169>.

@article{Elyasi2020,
abstract = {Let $L_c(X)= \lbrace f \in C(X) \colon \overline\{C_f\}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal \{R\}_\{\ell c\}(L)$. We observe that $\mathcal \{R\}_\{\ell c\}(L)$ enjoys most of the important properties shared by $\mathcal \{R\}(L)$ and $\mathcal \{R\}_c(L)$, where $\mathcal \{R\}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal \{R\}(L)$, $\mathcal \{R\}_\{\ell c\}(L)$, and $\mathcal \{R\}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal \{R\}_\{\ell c\}\big (\mathfrak \{O\}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal \{R\}_\{\ell c\}(L)=\mathcal \{R\}(L)$ are characterized.},
author = {Elyasi, M., Estaji, A. A., Robat Sarpoushi, M.},
journal = {Archivum Mathematicum},
keywords = {functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame},
language = {eng},
number = {3},
pages = {127-140},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Locally functionally countable subalgebra of $\mathcal \{R\}(L)$},
url = {http://eudml.org/doc/297169},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Elyasi, M.
AU - Estaji, A. A.
AU - Robat Sarpoushi, M.
TI - Locally functionally countable subalgebra of $\mathcal {R}(L)$
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 127
EP - 140
AB - Let $L_c(X)= \lbrace f \in C(X) \colon \overline{C_f}= X\rbrace $, where $C_f$ is the union of all open subsets $U \subseteq X$ such that $\vert f(U) \vert \le \aleph _0$. In this paper, we present a pointfree topology version of $L_c(X)$, named $\mathcal {R}_{\ell c}(L)$. We observe that $\mathcal {R}_{\ell c}(L)$ enjoys most of the important properties shared by $\mathcal {R}(L)$ and $\mathcal {R}_c(L)$, where $\mathcal {R}_c(L)$ is the pointfree version of all continuous functions of $C(X)$ with countable image. The interrelation between $\mathcal {R}(L)$, $\mathcal {R}_{\ell c}(L)$, and $\mathcal {R}_c(L)$ is examined. We show that $L_c(X) \cong \mathcal {R}_{\ell c}\big (\mathfrak {O}(X)\big )$ for any space $X$. Frames $L$ for which $\mathcal {R}_{\ell c}(L)=\mathcal {R}(L)$ are characterized.
LA - eng
KW - functionally countable subalgebra; locally functionally countable subalgebra; sublocale; frame
UR - http://eudml.org/doc/297169
ER -

References

top
  1. Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R., 10.1216/RMJ-2018-48-2-345, Rocky Mountain J. Math. 48 (2) (2018), 354–384, http://doi.org/10.1216/RMJ-2018-48-2-345. (2018) MR3809150DOI10.1216/RMJ-2018-48-2-345
  2. Ball, R.N., Walters-Wayland, J., C - and C * - quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412 (2002), 354–384. (2002) MR1952051
  3. Banaschewski, B., The real numbers in pointfree topology, Textos de Mathemática (Séries B), Universidade de Coimbra, Departamento de Mathemática, Coimbra 12 (1997), 1–96. (1997) Zbl0891.54009MR1621835
  4. Bhattacharjee, P., Knox, M.L., Mcgovern, W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2) (2014), 147–154, https://doi.org/10.4995/agt.2014.3181. (2014) MR3267269DOI10.4995/agt.2014.3181
  5. Dowker, C.H., On Urysohn’s lemma, General Topology and its Relations to Modern Analysis, Proceedings of the second Prague topological symposium, 1966, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 111–114. (1967) MR0238744
  6. Estaji, A.A., Karimi Feizabadi, A., Robat Sarpoushi, M., 10.2298/FIL1819741E, Filomat 32 (19) (2018), 6741–6752, https://doi.org/10.2298/FIL1819741E. (2018) MR3899307DOI10.2298/FIL1819741E
  7. Estaji, A.A., Karimi Feizabadi, A., Zarghani, M., Zero elements and z -ideals in modified pointfree topology, Bull. Iranian Math. Soc. 43 (7) (2017), 2205–2226. (2017) MR3885660
  8. Estaji, A.A., Robat Sarpoushi, M., On C P -frames, submitted. 
  9. Estaji, A.A., Robat Sarpoushi, M., Elyasi, M., 10.1007/s00012-019-0619-z, Algebra Universalis 80 (4) (2019), 14, https: //doi.org/10.1007/s00012-019-0619-z 4. (2019) MR4027118DOI10.1007/s00012-019-0619-z
  10. Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M., 10.4171/RSMUP/129-4, Rend. Semin. Mat. Univ. Padova 129 (2013), 47–69, https://doi.org/10.4171/RSMUP/129-4. (2013) MR3090630DOI10.4171/RSMUP/129-4
  11. Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M., 10.1007/s41980-018-0124-8, Bull. Iranian Math. Soc. 45 (2019), 173–187, https://doi.org/10.1007/s41980-018-0124-8. (2019) MR3913987DOI10.1007/s41980-018-0124-8
  12. Gillman, L., Jerison, M., Rings of Continuous Functions, Springer-Verlag, 1976. (1976) Zbl0327.46040MR0407579
  13. Johnstone, P.T., Stone Spaces, Cambridge Univ. Press, Cambridge, 1982. (1982) Zbl0499.54001MR0698074
  14. Karamzadeh, O.A.S., Keshtkar, Z., 10.2989/16073606.2018.1441919, Quaest. Math. 42 (8) (2018), 1135–1167, https://doi.org/10.2989/16073606.2018.1441919. (2018) MR3885948DOI10.2989/16073606.2018.1441919
  15. Karamzadeh, O.A.S., Namdari, M., Soltanpour, S., 10.4995/agt.2015.3445, Appl. Gen. Topol. 16 (2015), 183–207, https://doi.org/10.4995/agt.2015.3445. (2015) MR3411461DOI10.4995/agt.2015.3445
  16. Karimi Feizabadi, A., Estaji, A.A., Robat Sarpoushi, M., Pointfree version of image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl. 9 (1) (2018), 59–75. (2018) MR3833111
  17. Mehri, R., Mohamadian, R., 10.15672/HJMS.2017.435, Hacet. J. Math. Stat. 46 (6) (2017), 1053–1068, http://doi.org/10.15672/HJMS.2017.435. (2017) MR3751773DOI10.15672/HJMS.2017.435
  18. Namdari, M., Veisi, A., Rings of quotients of the subalgebra of C ( X ) consisting of functions with countable image, Int. Math. Forum 7 (12) (2012), 561–571. (2012) MR2969547
  19. Picado, J., Pultr, A., Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel AG, Basel, 2012. (2012) MR2868166
  20. Robat Sarpoushi, M., Pointfree topology version of continuous functions with countable image, Hakim Sabzevari University, Sabzevar, Iran (2017), Phd. Thesis. (2017) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.