The clean elements of the ring
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 211-230
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEstaji, Ali Akbar, and Taha, Maryam. "The clean elements of the ring $\mathcal {R}(L)$." Czechoslovak Mathematical Journal (2024): 211-230. <http://eudml.org/doc/299243>.
@article{Estaji2024,
abstract = {We characterize clean elements of $\mathcal \{R\}(L)$ and show that $\alpha \in \mathcal \{R\}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\mathfrak \{c\}_L(\{\rm coz\} (\alpha - \{\bf 1\})) \subseteq U \subseteq \mathfrak \{o\}_L( \{\rm coz\} (\alpha ))$. Also, we prove that $\mathcal \{R\}(L)$ is clean if and only if $\mathcal \{R\}(L)$ has a clean prime ideal. Then, according to the results about $\mathcal \{R\}(L),$ we immediately get results about $\mathcal \{C\}_\{c\}(L).$},
author = {Estaji, Ali Akbar, Taha, Maryam},
journal = {Czechoslovak Mathematical Journal},
keywords = {frame; ring of real-valued continuous function; strongly zero-dimensional; clean element; sublocale},
language = {eng},
number = {1},
pages = {211-230},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The clean elements of the ring $\mathcal \{R\}(L)$},
url = {http://eudml.org/doc/299243},
year = {2024},
}
TY - JOUR
AU - Estaji, Ali Akbar
AU - Taha, Maryam
TI - The clean elements of the ring $\mathcal {R}(L)$
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 211
EP - 230
AB - We characterize clean elements of $\mathcal {R}(L)$ and show that $\alpha \in \mathcal {R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\mathfrak {c}_L({\rm coz} (\alpha - {\bf 1})) \subseteq U \subseteq \mathfrak {o}_L( {\rm coz} (\alpha ))$. Also, we prove that $\mathcal {R}(L)$ is clean if and only if $\mathcal {R}(L)$ has a clean prime ideal. Then, according to the results about $\mathcal {R}(L),$ we immediately get results about $\mathcal {C}_{c}(L).$
LA - eng
KW - frame; ring of real-valued continuous function; strongly zero-dimensional; clean element; sublocale
UR - http://eudml.org/doc/299243
ER -
References
top- Aliabad, A. R., Mahmoudi, M., 10.52547/CGASA.15.1.35, Categ. Gen. Algebr. Struct. Appl. 15 (2021), 35-58. (2021) Zbl07528806MR4357758DOI10.52547/CGASA.15.1.35
- Azarpanah, F., 10.1023/A:1015654520481, Acta. Math. Hung. 94 (2002), 53-58. (2002) Zbl0996.54023MR1905786DOI10.1023/A:1015654520481
- Ball, R. N., Hager, A. W., 10.1016/0022-4049(91)90004-L, J. Pure Appl. Algebra 70 (1991), 17-43. (1991) Zbl0732.06009MR1100503DOI10.1016/0022-4049(91)90004-L
- Ball, R. N., Walters-Wayland, J., 10.4064/dm412-0-1, Diss. Math. 412 (2002), 1-62. (2002) Zbl1012.54025MR1952051DOI10.4064/dm412-0-1
- Banaschewski, B., 10.1007/978-94-011-5640-0_5, Ordered Algebraic Structures Kluwer Academic, Dordrecht (1997), 123-148. (1997) Zbl0870.06017MR1445110DOI10.1007/978-94-011-5640-0_5
- Banaschewski, B., The real numbers in pointfree topology, Textos de Mathemática. Series B 12. Universidade de Coimbra, Coimbra (1997). (1997) Zbl0891.54009MR1621835
- Banaschewski, B., Gelfand and exchange rings: Their spectra in pointfree topology, Arab. J. Sci. Eng., Sect. C, Theme Issues 25 (2000), 3-22. (2000) Zbl1271.13052MR1829217
- Banaschewski, B., On the pointfree counterpart of the local definition of classical continuous maps, Categ. Gen. Algebr. Struct. Appl. 8 (2018), 1-8. (2018) Zbl1477.06028MR3754731
- Banaschewski, B., Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentat. Math. Univ. Carol. 37 (1996), 577-587. (1996) Zbl0881.54018MR1426922
- Dube, T., 10.1007/s00012-009-0006-2, Algebra Univers. 61 (2009), 115-138. (2009) Zbl1190.06007MR2551788DOI10.1007/s00012-009-0006-2
- Elyasi, M., Estaji, A. A., Sarpoushi, M. Robat, 10.5817/AM2020-3-127, Arch. Math., Brno 56 (2020), 127-140. (2020) Zbl07250674MR4156440DOI10.5817/AM2020-3-127
- Estaji, A. A., Feizabadi, A. Karimi, Sarpoushi, M. Robat, 10.2298/FIL1819741E, Filomat 32 (2018), 6741-6752. (2018) Zbl07554263MR3899307DOI10.2298/FIL1819741E
- Estaji, A. A., Sarpoushi, M. Robat, Elyasi, M., 10.1007/s00012-019-0619-z, Algebra Univers. 80 (2019), Article ID 43, 14 pages. (2019) Zbl1477.06030MR4027118DOI10.1007/s00012-019-0619-z
- Ferreira, M. J., Picado, J., Pinto, S. M., 10.1016/j.topol.2018.06.007, Topology Appl. 245 (2018), 21-45. (2018) Zbl1473.06008MR3823988DOI10.1016/j.topol.2018.06.007
- Johnstone, P. T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). (1982) Zbl0499.54001MR0698074
- Johnstone, P. T., 10.1016/S0022-4049(96)00165-X, J. Pure Appl. Algebra 116 (1997), 199-220. (1997) Zbl0881.18001MR1437621DOI10.1016/S0022-4049(96)00165-X
- Johnstone, P. T., Topos Theory, London Mathematical Society Monographs 10. Academic Press, New York (1997). (1997) Zbl0368.18001MR0470019
- Karamzadeh, O. A. S., Namdari, M., Soltanpour, S., 10.4995/agt.2015.3445, Appl. Gen. Topol. 16 (2015), 183-207. (2015) Zbl1397.54032MR3411461DOI10.4995/agt.2015.3445
- Feizabadi, A. Karimi, Estaji, A. A., Sarpoushi, M. Robat, 10.29252/CGASA.9.1.59, Categ. Gen. Algebr. Struct. Appl. 9 (2018), 59-75. (2018) Zbl1452.06007MR3833111DOI10.29252/CGASA.9.1.59
- Kou, H., Luo, M. K., 10.1007/s101140000072, Acta Math. Sin., Engl. Ser. 18 (2002), 47-54. (2002) Zbl0996.06006MR1894837DOI10.1007/s101140000072
- Mehri, R., Mohamadian, R., 10.15672/HJMS.2017.435, Hacet. J. Math. Stat. 46 (2017), 1053-1068. (2017) Zbl1396.54021MR3751773DOI10.15672/HJMS.2017.435
- Picado, J., Pultr, A., 10.1007/978-3-0348-0154-6, Frontiers in Mathematics. Springer, Berlin (2012). (2012) Zbl1231.06018MR2868166DOI10.1007/978-3-0348-0154-6
- Sarpoushi, M. Robat, Pointfree Topology Version of Continuous Functions with Countable Image: Ph.D. Thesis, Hakim Sabzevari University, Sabzevar (2017). (2017)
- Taha, M., Estaji, A. A., Sarpoushi, M. Robat, On the regularity of , Annual Iranian Mathematics Confrence, University of Science Technology of Mazandaran, September 5-8, 2022 1323-1326.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.