On polynomial robustness of flux reconstructions
Applications of Mathematics (2020)
- Volume: 65, Issue: 2, page 153-172
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVlasák, Miloslav. "On polynomial robustness of flux reconstructions." Applications of Mathematics 65.2 (2020): 153-172. <http://eudml.org/doc/297176>.
@article{Vlasák2020,
abstract = {We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^\{1/2\}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments.},
author = {Vlasák, Miloslav},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimate; $p$-robustness; elliptic problem},
language = {eng},
number = {2},
pages = {153-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On polynomial robustness of flux reconstructions},
url = {http://eudml.org/doc/297176},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Vlasák, Miloslav
TI - On polynomial robustness of flux reconstructions
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 153
EP - 172
AB - We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^{1/2}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments.
LA - eng
KW - a posteriori error estimate; $p$-robustness; elliptic problem
UR - http://eudml.org/doc/297176
ER -
References
top- Ainsworth, M., Oden, J. T., 10.1016/0045-7825(92)90016-D, Comput. Methods Appl. Mech. Eng. 101 (1992), 73-96. (1992) Zbl0778.73060MR1195579DOI10.1016/0045-7825(92)90016-D
- Ainsworth, M., Oden, J. T., 10.1002/9781118032824, Pure and Applied Mathematics, Wiley-Interscience, New York (2000). (2000) Zbl1008.65076MR1885308DOI10.1002/9781118032824
- Ainsworth, M., Senior, B., 10.1016/S0168-9274(97)00083-4, Appl. Numer. Math. 26 (1998), 165-178. (1998) Zbl0895.65052MR1602856DOI10.1016/S0168-9274(97)00083-4
- Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). (2001) Zbl0995.65501MR1857191
- Babuška, I., Suri, M., 10.1051/m2an/1987210201991, RAIRO, Modélisation Math. Anal. Numér. 21 (1987), 199-238. (1987) Zbl0623.65113MR0896241DOI10.1051/m2an/1987210201991
- Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
- Braess, D., Pillwein, V., Schöberl, J., 10.1016/j.cma.2008.12.010, Comput. Methods Appl. Mech. Eng. 198 (2009), 1189-1197. (2009) Zbl1157.65483MR2500243DOI10.1016/j.cma.2008.12.010
- Cochez-Dhondt, S., Nicaise, S., Repin, S., 10.1051/mmnp/20094105, Math. Model. Nat. Phenom. 4 (2009), 106-122. (2009) Zbl1163.65074MR2483555DOI10.1051/mmnp/20094105
- Eriksson, K., Estep, D., Hansbo, P., Johnson, C., Computational Differential Equations, Cambridge University Press, Cambridge (1996). (1996) Zbl0946.65049MR1414897
- Ern, A., Stephansen, A. F., Vohralík, M., 10.1016/j.cam.2009.12.009, J. Comput. Appl. Math. 234 (2010), 114-130. (2010) Zbl1190.65165MR2601287DOI10.1016/j.cam.2009.12.009
- Ern, A., Vohralík, M., 10.1137/130950100, SIAM J. Numer. Anal. 53 (2015), 1058-1081. (2015) Zbl1312.76026MR3335498DOI10.1137/130950100
- Jiránek, P., Strakoš, Z., Vohralík, M., 10.1137/08073706X, SIAM J. Sci. Comput. 32 (2010), 1567-1590. (2010) Zbl1215.65168MR2652091DOI10.1137/08073706X
- Mali, O., Neittaanmäki, P., Repin, S. I., 10.1007/978-94-007-7581-7, Computational Methods in Applied Sciences 32, Springer, Dordrecht (2014). (2014) Zbl1364.65106MR3136124DOI10.1007/978-94-007-7581-7
- Melenk, J. M., Wohlmuth, B., 10.1023/A:1014268310921, Adv. Comput. Math. 150 (2001), 311-331. (2001) Zbl0991.65111MR1887738DOI10.1023/A:1014268310921
- Prager, W., Synge, J. L., 10.1090/qam/25902, Q. Appl. Math. 5 (1947), 241-269. (1947) Zbl0029.23505MR0025902DOI10.1090/qam/25902
- Repin, S. I., 10.1090/S0025-5718-99-01190-4, Math. Comput. 69 (2000), 481-500. (2000) Zbl0949.65070MR1681096DOI10.1090/S0025-5718-99-01190-4
- Repin, S. I., 10.1515/9783110203042, Radon Series on Computational and Applied Mathematics 4, de Gruyter, Berlin (2008). (2008) Zbl1162.65001MR2458008DOI10.1515/9783110203042
- Roos, H.-G., Stynes, M., Tobiska, L., 10.1007/978-3-540-34467-4, Springer Series in Computational Mathematics 24, Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024DOI10.1007/978-3-540-34467-4
- Szegő, G., 10.1090/coll/023, Colloquium Publication 23, American Mathematical Society, New York (1939). (1939) Zbl0023.21505MR0000077DOI10.1090/coll/023
- Tomar, S. K., Repin, S. I., 10.1016/j.cam.2008.08.015, J. Comput. Appl. Math. 226 (2009), 358-369. (2009) Zbl1163.65077MR2502931DOI10.1016/j.cam.2008.08.015
- Verfürth, R., 10.1093/acprof:oso/9780199679423.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). (2013) Zbl1279.65127MR3059294DOI10.1093/acprof:oso/9780199679423.001.0001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.