On polynomial robustness of flux reconstructions

Miloslav Vlasák

Applications of Mathematics (2020)

  • Volume: 65, Issue: 2, page 153-172
  • ISSN: 0862-7940

Abstract

top
We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on p 1 / 2 only, where p is the discretization polynomial degree. The theoretical results are verified by numerical experiments.

How to cite

top

Vlasák, Miloslav. "On polynomial robustness of flux reconstructions." Applications of Mathematics 65.2 (2020): 153-172. <http://eudml.org/doc/297176>.

@article{Vlasák2020,
abstract = {We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^\{1/2\}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments.},
author = {Vlasák, Miloslav},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimate; $p$-robustness; elliptic problem},
language = {eng},
number = {2},
pages = {153-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On polynomial robustness of flux reconstructions},
url = {http://eudml.org/doc/297176},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Vlasák, Miloslav
TI - On polynomial robustness of flux reconstructions
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 153
EP - 172
AB - We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on $p^{1/2}$ only, where $p$ is the discretization polynomial degree. The theoretical results are verified by numerical experiments.
LA - eng
KW - a posteriori error estimate; $p$-robustness; elliptic problem
UR - http://eudml.org/doc/297176
ER -

References

top
  1. Ainsworth, M., Oden, J. T., 10.1016/0045-7825(92)90016-D, Comput. Methods Appl. Mech. Eng. 101 (1992), 73-96. (1992) Zbl0778.73060MR1195579DOI10.1016/0045-7825(92)90016-D
  2. Ainsworth, M., Oden, J. T., 10.1002/9781118032824, Pure and Applied Mathematics, Wiley-Interscience, New York (2000). (2000) Zbl1008.65076MR1885308DOI10.1002/9781118032824
  3. Ainsworth, M., Senior, B., 10.1016/S0168-9274(97)00083-4, Appl. Numer. Math. 26 (1998), 165-178. (1998) Zbl0895.65052MR1602856DOI10.1016/S0168-9274(97)00083-4
  4. Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). (2001) Zbl0995.65501MR1857191
  5. Babuška, I., Suri, M., 10.1051/m2an/1987210201991, RAIRO, Modélisation Math. Anal. Numér. 21 (1987), 199-238. (1987) Zbl0623.65113MR0896241DOI10.1051/m2an/1987210201991
  6. Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
  7. Braess, D., Pillwein, V., Schöberl, J., 10.1016/j.cma.2008.12.010, Comput. Methods Appl. Mech. Eng. 198 (2009), 1189-1197. (2009) Zbl1157.65483MR2500243DOI10.1016/j.cma.2008.12.010
  8. Cochez-Dhondt, S., Nicaise, S., Repin, S., 10.1051/mmnp/20094105, Math. Model. Nat. Phenom. 4 (2009), 106-122. (2009) Zbl1163.65074MR2483555DOI10.1051/mmnp/20094105
  9. Eriksson, K., Estep, D., Hansbo, P., Johnson, C., Computational Differential Equations, Cambridge University Press, Cambridge (1996). (1996) Zbl0946.65049MR1414897
  10. Ern, A., Stephansen, A. F., Vohralík, M., 10.1016/j.cam.2009.12.009, J. Comput. Appl. Math. 234 (2010), 114-130. (2010) Zbl1190.65165MR2601287DOI10.1016/j.cam.2009.12.009
  11. Ern, A., Vohralík, M., 10.1137/130950100, SIAM J. Numer. Anal. 53 (2015), 1058-1081. (2015) Zbl1312.76026MR3335498DOI10.1137/130950100
  12. Jiránek, P., Strakoš, Z., Vohralík, M., 10.1137/08073706X, SIAM J. Sci. Comput. 32 (2010), 1567-1590. (2010) Zbl1215.65168MR2652091DOI10.1137/08073706X
  13. Mali, O., Neittaanmäki, P., Repin, S. I., 10.1007/978-94-007-7581-7, Computational Methods in Applied Sciences 32, Springer, Dordrecht (2014). (2014) Zbl1364.65106MR3136124DOI10.1007/978-94-007-7581-7
  14. Melenk, J. M., Wohlmuth, B., 10.1023/A:1014268310921, Adv. Comput. Math. 150 (2001), 311-331. (2001) Zbl0991.65111MR1887738DOI10.1023/A:1014268310921
  15. Prager, W., Synge, J. L., 10.1090/qam/25902, Q. Appl. Math. 5 (1947), 241-269. (1947) Zbl0029.23505MR0025902DOI10.1090/qam/25902
  16. Repin, S. I., 10.1090/S0025-5718-99-01190-4, Math. Comput. 69 (2000), 481-500. (2000) Zbl0949.65070MR1681096DOI10.1090/S0025-5718-99-01190-4
  17. Repin, S. I., 10.1515/9783110203042, Radon Series on Computational and Applied Mathematics 4, de Gruyter, Berlin (2008). (2008) Zbl1162.65001MR2458008DOI10.1515/9783110203042
  18. Roos, H.-G., Stynes, M., Tobiska, L., 10.1007/978-3-540-34467-4, Springer Series in Computational Mathematics 24, Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024DOI10.1007/978-3-540-34467-4
  19. Szegő, G., 10.1090/coll/023, Colloquium Publication 23, American Mathematical Society, New York (1939). (1939) Zbl0023.21505MR0000077DOI10.1090/coll/023
  20. Tomar, S. K., Repin, S. I., 10.1016/j.cam.2008.08.015, J. Comput. Appl. Math. 226 (2009), 358-369. (2009) Zbl1163.65077MR2502931DOI10.1016/j.cam.2008.08.015
  21. Verfürth, R., 10.1093/acprof:oso/9780199679423.001.0001, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). (2013) Zbl1279.65127MR3059294DOI10.1093/acprof:oso/9780199679423.001.0001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.