True preimages of compact or separable sets for functional analysts
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 69-82
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDrewnowski, Lech. "True preimages of compact or separable sets for functional analysts." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 69-82. <http://eudml.org/doc/297183>.
@article{Drewnowski2020,
abstract = {We discuss various results on the existence of ‘true’ preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.},
author = {Drewnowski, Lech},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {preimage; open map; complete metric space; $F$-space; $F$-lattice; compact set; uniformly open map; surpositive operator; lower semicontinuous set-valued map},
language = {eng},
number = {1},
pages = {69-82},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {True preimages of compact or separable sets for functional analysts},
url = {http://eudml.org/doc/297183},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Drewnowski, Lech
TI - True preimages of compact or separable sets for functional analysts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 69
EP - 82
AB - We discuss various results on the existence of ‘true’ preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.
LA - eng
KW - preimage; open map; complete metric space; $F$-space; $F$-lattice; compact set; uniformly open map; surpositive operator; lower semicontinuous set-valued map
UR - http://eudml.org/doc/297183
ER -
References
top- Aliprantis C., Burkinshaw O., 10.1090/surv/105, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003. MR2011364DOI10.1090/surv/105
- Bessaga C., Pełczyński A., Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, 58, PWN---Polish Scientific Publishers, Warsaw, 1975. MR0478168
- Bourbaki N., Éléments de mathématique. I: Les structures fondamentales de l'analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Deuxième édition revue et augmentée, Actualités Scientifiques et Industrielles, 1045, Hermann, Paris, 1958 (French). MR0173226
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
- Drewnowski L., Wnuk W., 10.4064/sm170524-23-12, Studia Math. 245 (2019), no. 2, 129–167. MR3863066DOI10.4064/sm170524-23-12
- Engelking R., General Topology, Biblioteka Matematyczna, Tom 47, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Zbl0684.54001MR0500779
- Jarchow H., Locally Convex Spaces, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981. Zbl0466.46001MR0632257
- Köthe G., Topological Vector Spaces. I, Die Grundlehren der mathematischen Wissenschaften, 159, Springer, New York, 1969. MR0248498
- Michael E., 10.1215/S0012-7094-59-02662-6, Duke Math. J. 26 (1959), 647–651. MR0109343DOI10.1215/S0012-7094-59-02662-6
- Michael E., -spaces, J. Math. Mech. 15 (1966), 983–1002. MR0206907
- Michael E., 10.1215/S0012-7094-69-03617-5, Duke Math. J. 36 (1969), 125–127. MR0240790DOI10.1215/S0012-7094-69-03617-5
- Michael E., K. Nagami, 10.1090/S0002-9939-1973-0307148-4, Proc. Amer. Math. Soc. 37 (1973), 260–266. MR0307148DOI10.1090/S0002-9939-1973-0307148-4
- Nagami K., 10.1016/0016-660X(73)90023-8, General Topology and Appl. 3 (1973), 355–367. MR0345055DOI10.1016/0016-660X(73)90023-8
- Schaefer H. H., Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, 215, Springer, New York, 1974. Zbl0296.47023MR0423039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.