True preimages of compact or separable sets for functional analysts

Lech Drewnowski

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 1, page 69-82
  • ISSN: 0010-2628

Abstract

top
We discuss various results on the existence of ‘true’ preimages under continuous open maps between F -spaces, F -lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.

How to cite

top

Drewnowski, Lech. "True preimages of compact or separable sets for functional analysts." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 69-82. <http://eudml.org/doc/297183>.

@article{Drewnowski2020,
abstract = {We discuss various results on the existence of ‘true’ preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.},
author = {Drewnowski, Lech},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {preimage; open map; complete metric space; $F$-space; $F$-lattice; compact set; uniformly open map; surpositive operator; lower semicontinuous set-valued map},
language = {eng},
number = {1},
pages = {69-82},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {True preimages of compact or separable sets for functional analysts},
url = {http://eudml.org/doc/297183},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Drewnowski, Lech
TI - True preimages of compact or separable sets for functional analysts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 69
EP - 82
AB - We discuss various results on the existence of ‘true’ preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.
LA - eng
KW - preimage; open map; complete metric space; $F$-space; $F$-lattice; compact set; uniformly open map; surpositive operator; lower semicontinuous set-valued map
UR - http://eudml.org/doc/297183
ER -

References

top
  1. Aliprantis C., Burkinshaw O., 10.1090/surv/105, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003. MR2011364DOI10.1090/surv/105
  2. Bessaga C., Pełczyński A., Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, 58, PWN---Polish Scientific Publishers, Warsaw, 1975. MR0478168
  3. Bourbaki N., Éléments de mathématique. I: Les structures fondamentales de l'analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Deuxième édition revue et augmentée, Actualités Scientifiques et Industrielles, 1045, Hermann, Paris, 1958 (French). MR0173226
  4. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
  5. Drewnowski L., Wnuk W., 10.4064/sm170524-23-12, Studia Math. 245 (2019), no. 2, 129–167. MR3863066DOI10.4064/sm170524-23-12
  6. Engelking R., General Topology, Biblioteka Matematyczna, Tom 47, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Zbl0684.54001MR0500779
  7. Jarchow H., Locally Convex Spaces, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981. Zbl0466.46001MR0632257
  8. Köthe G., Topological Vector Spaces. I, Die Grundlehren der mathematischen Wissenschaften, 159, Springer, New York, 1969. MR0248498
  9. Michael E., 10.1215/S0012-7094-59-02662-6, Duke Math. J. 26 (1959), 647–651. MR0109343DOI10.1215/S0012-7094-59-02662-6
  10. Michael E., 0 -spaces, J. Math. Mech. 15 (1966), 983–1002. MR0206907
  11. Michael E., 10.1215/S0012-7094-69-03617-5, Duke Math. J. 36 (1969), 125–127. MR0240790DOI10.1215/S0012-7094-69-03617-5
  12. Michael E., K. Nagami, 10.1090/S0002-9939-1973-0307148-4, Proc. Amer. Math. Soc. 37 (1973), 260–266. MR0307148DOI10.1090/S0002-9939-1973-0307148-4
  13. Nagami K., 10.1016/0016-660X(73)90023-8, General Topology and Appl. 3 (1973), 355–367. MR0345055DOI10.1016/0016-660X(73)90023-8
  14. Schaefer H. H., Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, 215, Springer, New York, 1974. Zbl0296.47023MR0423039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.