Displaying similar documents to “True preimages of compact or separable sets for functional analysts”

A new approach to construct uninorms via uninorms on bounded lattices

Zhen-Yu Xiu, Xu Zheng (2024)

Kybernetika

Similarity:

In this paper, on a bounded lattice L , we give a new approach to construct uninorms via a given uninorm U * on the subinterval [ 0 , a ] (or [ b , 1 ] ) of L under additional constraint conditions on L and U * . This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.

A class of multiplicative lattices

Tiberiu Dumitrescu, Mihai Epure (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the multiplicative lattices L which satisfy the condition a = ( a : ( a : b ) ) ( a : b ) for all a , b L . Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group or . A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

Similarity:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Method of averaging for the system of functional-differential inclusions

Teresa Janiak, Elżbieta Łuczak-Kumorek (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The basic idea of this paper is to give the existence theorem and the method of averaging for the system of functional-differential inclusions of the form ⎧ ( t ) F ( t , x t , y t ) (0) ⎨ ⎩ ( t ) G ( t , x t , y t ) (1)

Lattice copies of c₀ and in spaces of integrable functions for a vector measure

S. Okada, W. J. Ricker, E. A. Sánchez Pérez

Similarity:

The spaces L¹(m) of all m-integrable (resp. L ¹ w ( m ) of all scalarly m-integrable) functions for a vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs), are themselves lcHs for the mean convergence topology. Additionally, L ¹ w ( m ) is always a complex vector lattice; this is not necessarily so for L¹(m). To identify precisely when L¹(m) is also a complex vector lattice is one of our central aims. Whenever X is sequentially complete, then this is the case. If,...

Goldie extending elements in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2017)

Mathematica Bohemica

Similarity:

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations...

Modular lattices from finite projective planes

Tathagata Basak (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Using the geometry of the projective plane over the finite field 𝔽 q , we construct a Hermitian Lorentzian lattice L q of dimension ( q 2 + q + 2 ) defined over a certain number ring 𝒪 that depends on q . We show that infinitely many of these lattices are p -modular, that is, p L q ' = L q , where p is some prime in 𝒪 such that | p | 2 = q . The Lorentzian lattices L q sometimes lead to construction of interesting positive definite lattices. In particular, if q 3 mod 4 is a rational prime such that ( q 2 + q + 1 ) is norm of some element in...

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...

Some methods to obtain t-norms and t-conorms on bounded lattices

Gül Deniz Çaylı (2019)

Kybernetika

Similarity:

In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice L based on a priori given t-norm acting on [ a , 1 ] and t-conorm acting on [ 0 , a ] for an arbitrary element a L { 0 , 1 } . We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice. ...

Solutions for the p-order Feigenbaum’s functional equation h ( g ( x ) ) = g p ( h ( x ) )

Min Zhang, Jianguo Si (2014)

Annales Polonici Mathematici

Similarity:

This work deals with Feigenbaum’s functional equation ⎧ h ( g ( x ) ) = g p ( h ( x ) ) , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, g p is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

G -supplemented property in the lattices

Shahabaddin Ebrahimi Atani (2022)

Mathematica Bohemica

Similarity:

Let L be a lattice with the greatest element 1 . Following the concept of generalized small subfilter, we define g -supplemented filters and investigate the basic properties and possible structures of these filters.