Contribution of František Matúš to the research on conditional independence

Milan Studený

Kybernetika (2020)

  • Volume: 56, Issue: 5, page 850-874
  • ISSN: 0023-5954

Abstract

top
An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned.

How to cite

top

Studený, Milan. "Contribution of František Matúš to the research on conditional independence." Kybernetika 56.5 (2020): 850-874. <http://eudml.org/doc/297185>.

@article{Studený2020,
abstract = {An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned.},
author = {Studený, Milan},
journal = {Kybernetika},
keywords = {conditional independence; matroid; polymatroid; entropy function; semigraphoid; semimatroid},
language = {eng},
number = {5},
pages = {850-874},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Contribution of František Matúš to the research on conditional independence},
url = {http://eudml.org/doc/297185},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Studený, Milan
TI - Contribution of František Matúš to the research on conditional independence
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 850
EP - 874
AB - An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned.
LA - eng
KW - conditional independence; matroid; polymatroid; entropy function; semigraphoid; semimatroid
UR - http://eudml.org/doc/297185
ER -

References

top
  1. Birkhoff, G., Lattice Theory. Third edition., American Mathematical Society, Colloquium Publications 25, Providence 1995. MR0598630
  2. Chvátal, V., Wu, B., 10.1007/s10670-011-9321-z, Erkenntnis 76 (2012), 41-48. MR2874714DOI10.1007/s10670-011-9321-z
  3. Chvátal, V., Matúš, F., Zwólš, Y., Patterns of conjuctive forks., A 2016 manuscript arXiv/1608.03949. 
  4. Cox, D., Little, J., O'Shea, D., Ideals, Varieties, and Algorithms., Springer, New York 1997. Zbl1118.13001MR2290010
  5. Dawid, A. P., 10.1111/j.2517-6161.1979.tb01052.x, J. Royal Statist. Soc. B 41 (1979), 1, 1-31. MR0535541DOI10.1111/j.2517-6161.1979.tb01052.x
  6. Dawid, A. P., 10.1023/a:1016734104787, Ann. Math. Artif. Intell. 32 (2001), 1/4, 335-372. MR1859870DOI10.1023/a:1016734104787
  7. Fujishige, S., Submodular Functions and Optimization. Second edition., Elsevier, Amsterdam 2005. MR2171629
  8. Geiger, D., Paz, A., Pearl, J., 10.1016/0890-5401(91)90077-f, Inform. Comput. 91 (1991), 1, 128-141. MR1097266DOI10.1016/0890-5401(91)90077-f
  9. Geiger, D., Pearl, J., 10.1214/aos/1176349407, Ann. Statist. 21 (1993), 4, 2001-2021. MR1245778DOI10.1214/aos/1176349407
  10. Ingleton, A. W., 10.1007/bfb0061075, In: Lecture Notes in Computer Science 211, Springer, 1971, pp. 62-67. MR0337664DOI10.1007/bfb0061075
  11. Lauritzen, S. L., Graphical Models., Clarendon Press, Oxford 1996. MR1419991
  12. Loéve, M., Probability Theory, Foundations, Random Sequences., Van Nostrand, Toronto 1955. MR0066573
  13. Lněnička, R., Matúš, F., , Kybernetika 43 (2007), 3, 327-342. MR2362722DOI
  14. Malvestuto, F. M., 10.1016/0020-0255(92)90042-7, Inform. Sci. 59 (1992), 21-52. MR1128204DOI10.1016/0020-0255(92)90042-7
  15. Matúš, F., Independence and Radon Projections on Compact Groups (in Slovak)., Thesis for CSc. Degree in Theoretical Computer Science, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1988. 
  16. Matúš, F., 10.1016/0304-3975(91)90319-w, Theor. Computer Sci. 81 (1991), 117-126. MR1103102DOI10.1016/0304-3975(91)90319-w
  17. Matúš, F., 10.1017/s0021900200043552, J. Appl. Probab. 29 (1992), 745-749. MR1174448DOI10.1017/s0021900200043552
  18. Matúš, F., Ascending and descending conditional independence relations., In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 189-200. 
  19. Matúš, F., 10.1016/0304-3975(94)90248-8, Theor. Computer Sci. 134 (1994), 455-471. MR1304673DOI10.1016/0304-3975(94)90248-8
  20. Matúš, F., 10.1080/03081079308935205, Int. J. General Systems 22 (1994), 185-196. DOI10.1080/03081079308935205
  21. Matúš, F., 10.1016/0012-365x(93)e0100-i, Discrete Math. 135 (1994), 177-191. MR1310880DOI10.1016/0012-365x(93)e0100-i
  22. Matúš, F., Studený, M., 10.1017/s0963548300001644, Combinatorics, Probability and Computing 4 (1995), 269-278. MR1356579DOI10.1017/s0963548300001644
  23. Matúš, F., 10.1017/s0963548300001747, Combinator. Probab. Comput. 4 (1995), 407-417. MR1377558DOI10.1017/s0963548300001747
  24. Matúš, F., 10.1023/a:1018957117081, Ann. Math. Artif. Intell. 21 (1997), 99-128. MR1479010DOI10.1023/a:1018957117081
  25. Matúš, F., 10.1017/s0963548399003740, Combinator. Probab. Comput. 8 (1999), 269-276. MR1702569DOI10.1017/s0963548399003740
  26. Matúš, F., 10.1023/a:1014525817725, Ann. Math. Artif. Intell. 35 (2002), 287-294. MR1899955DOI10.1023/a:1014525817725
  27. Matúš, F., 10.1016/s0012-365x(03)00155-9, Discr. Math. 277 (2004), 115-145. MR2033729DOI10.1016/s0012-365x(03)00155-9
  28. Matúš, F., , In: Proc. WCII 2002, Lecture Notes in Artificial Intelligence 3301, Springer, Berlin 2005, pp. 152-161. DOI
  29. Matúš, F., 10.1214/11-aihp431, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 48 (2012), 4, 1137-1147. MR3052406DOI10.1214/11-aihp431
  30. Matúš, F., 10.1007/s10474-018-0799-6, Acta Math. Hungar. 154 (2018), 2, 511-524. MR3773837DOI10.1007/s10474-018-0799-6
  31. Mouchart, M., Rolin, J. M., , Statistica 44 (1984), 557-584. MR0818481DOI
  32. Nguyen, H. Q., 10.1090/S0002-9947-1978-0491269-9, Trans. Amer. Math. Soc. 238 (1978), 355-383. MR0491269DOI10.1090/S0002-9947-1978-0491269-9
  33. Oxley, J. G., Matroid Theory., Oxford University Press, Oxford 1992. MR1207587
  34. Pearl, J., Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference., Morgan Kaufmann, San Francisco 1988. MR0965765
  35. Reichenbach, H., The Direction of Time., University of California Press, Los Angeles 1956. 
  36. Spohn, W., 10.1007/bf00258078, J. Philosoph. Logic 9 (1980), 1, 73-99. MR0563250DOI10.1007/bf00258078
  37. Studený, M., Conditional independence relations have no finite complete characterization., In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 377-396. 
  38. Studený, M., 10.1080/03081079308935207, Int. J. General Syst. 22 (1994), 207-217. DOI10.1080/03081079308935207
  39. Studený, M., 10.1023/a:1018905100242, Ann. Math. Artif. Intell. 21 (1997), 71-98. MR1479009DOI10.1023/a:1018905100242
  40. Studený, M., Probabilistic Conditional Independence Structures., Springer, London 2005. Zbl1070.62001MR3183760
  41. Whitney, H., 10.2307/2371182, Amer. J. Math. 57 (1935), 3, 509-533. MR1507091DOI10.2307/2371182
  42. Whittaker, J., Graphical Models in Applied Multivariate Statistics., John Wiley and Sons, Chichester 1990. MR1112133
  43. Yeung, R. W., Information Theory and Network Coding., Springer, New York 2008. 
  44. Zhang, Z., Yeung, R. W., 10.1109/18.641561, IEEE Trans. Inform. Theory 43 (1997), 1982-1986. MR1481054DOI10.1109/18.641561
  45. Ziegler, G. M., Lectures on Polytopes., Springer, New York 1995. Zbl0823.52002MR1311028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.