On Gaussian conditional independence structures
Radim Lněnička; František Matúš
Kybernetika (2007)
- Volume: 43, Issue: 3, page 327-342
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Cox D., Little, J., O’Shea D., Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra. Second Edition. Springer-Verlag, New York 1997 Zbl1118.13001MR1417938
- Dawid A. P., Conditional independence in statistical theory, J. Roy. Statist. Soc. Ser. B 41 (1979), 1–31 (1979) Zbl0408.62004MR0535541
- Dawid A. P., Conditional independence for statistical operations, Ann. Statist. 8 (1980), 598–617 (1980) Zbl0434.62006MR0568723
- Dempster A. P., Covariance selection, Biometrics 28 (1972), 157–175 (1972)
- Frydenberg M., Marginalization and collapsibility in graphical interaction models, Ann. Statist. 18 (1990), 790–805 (1990) Zbl0725.62057MR1056337
- Kauermann G., On a dualization of graphical Gaussian models, Scand. J. Statist. 23 (1996), 105–116 (1996) Zbl0912.62006MR1380485
- Kurosh A., Higher Algebra, Mir Publishers, Moscow 1975 Zbl0546.00002MR0384363
- Lauritzen S. L., Graphical Models, (Oxford Statistical Science Series 17.) Oxford University Press, New York 1996 Zbl1055.62126MR1419991
- Levitz M., Perlman M. D., Madigan D., Separation and completeness properties for AMP chain graph Markov models, Ann. Statist. 29 (2001), 1751–1784 Zbl1043.62080MR1891745
- Lněnička R., On conditional independences among four Gaussian variables, In: Proc. Conditionals, Information, and Inference – WCII’04 (G. Kern-Isberner, W. Roedder, and F. Kulmann, eds.), Universität Ulm, Ulm 2004, pp. 89–101
- Matúš F., Ascending and descending conditional independence relations, In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 189–200 (1991)
- Matúš F., On equivalence of Markov properties over undirected graphs, J. Appl. Probab. 29 (1992), 745–749 (1992) Zbl0753.68080MR1174448
- Matúš F., Conditional independences among four random variables II, Combin. Probab. Comput. 4 (1995), 407–417 (1995) Zbl0846.60004MR1377558
- Matúš F., Conditional independence structures examined via minors, Ann. Math. Artif. Intell. 21 (1997), 99–128 (1997) Zbl0888.68097MR1479010
- Matúš F., Conditional independences among four random variables III: final conclusion, Combin. Probab. Comput. 8 (1999), 269–276 (1999) Zbl0941.60004MR1702569
- Matúš F., Conditional independences in Gaussian vectors and rings of polynomials, In: Proc. Conditionals, Information, and Inference – WCII 2002 (Lecture Notes in Computer Science 3301; G. Kern-Isberner, W. Rödder, and F. Kulmann, eds.), Springer, Berlin 2005, pp. 152–161 Zbl1111.68685
- Matúš F., Towards classification of semigraphoids, Discrete Math. 277 (2004), 115–145 Zbl1059.68082MR2033729
- Matúš F., Studený M., Conditional independences among four random variables I, Combin. Probab. Comput. 4 (1995), 269–278 (1995) Zbl0839.60004
- Pearl J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, Calif. 1988 Zbl0746.68089MR0965765
- Prasolov V. V., Problems and Theorems in Linear Algebra, (Translations of Mathematical Monographs 134.) American Mathematical Society 1996 Zbl1185.15001MR1277174
- Studený M., Conditional independence relations have no finite complete characterization, In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 377–396 (1991)
- Studený M., Structural semigraphoids, Internat. J. Gen. Syst. 22 (1994), 207–217 (1994) Zbl0797.60006
- Studený M., Probabilistic Conditional Independence Structures, Springer, London 2005
- Šimeček P., Classes of Gaussian, discrete and binary representable independence models have no finite characterization, In: Prague Stochastics (M. Hušková and M. Janžura, eds.), Matfyzpress, Charles University, Prague 2006, pp. 622–632
- Šimeček P., Gaussian representation of independence models over four random variables, In: Proc. COMPSTAT 2006 – World Conference on Computational Statistics 17 (A. Rizzi and M. Vichi, eds.), Rome 2006, pp. 1405–1412
- Whittaker J., Graphical Models in Applied Multivariate Statistics, Wiley, New York 1990 Zbl1151.62053MR1112133