Secret sharing schemes for ports of matroids of rank 3
Kybernetika (2020)
- Volume: 56, Issue: 5, page 903-915
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFarràs, Oriol. "Secret sharing schemes for ports of matroids of rank 3." Kybernetika 56.5 (2020): 903-915. <http://eudml.org/doc/297215>.
@article{Farràs2020,
abstract = {A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not a sufficient condition to admit an ideal secret sharing scheme. In this work we present a linear secret sharing scheme construction for ports of matroids of rank 3 in which the size of each share is at most $n$ times the size of the secret. Using the previously known secret sharing constructions, the size of each share was $O(n^2/\log n)$ the size of the secret. Our construction is extended to ports of matroids of any rank $k\ge 2$, obtaining secret sharing schemes in which the size of each share is at most $n^\{k-2\}$ times the size of the secret. This work is complemented by presenting lower bounds: There exist matroid ports that require $(\mathbb \{F\}_q,\ell )$-linear secret schemes with total information ratio $\Omega (2^\{n/2\}/\ell n^\{3/4\}\sqrt\{\log q\})$.},
author = {Farràs, Oriol},
journal = {Kybernetika},
keywords = {secret sharing schemes; matroids; matroid ports},
language = {eng},
number = {5},
pages = {903-915},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Secret sharing schemes for ports of matroids of rank 3},
url = {http://eudml.org/doc/297215},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Farràs, Oriol
TI - Secret sharing schemes for ports of matroids of rank 3
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 903
EP - 915
AB - A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not a sufficient condition to admit an ideal secret sharing scheme. In this work we present a linear secret sharing scheme construction for ports of matroids of rank 3 in which the size of each share is at most $n$ times the size of the secret. Using the previously known secret sharing constructions, the size of each share was $O(n^2/\log n)$ the size of the secret. Our construction is extended to ports of matroids of any rank $k\ge 2$, obtaining secret sharing schemes in which the size of each share is at most $n^{k-2}$ times the size of the secret. This work is complemented by presenting lower bounds: There exist matroid ports that require $(\mathbb {F}_q,\ell )$-linear secret schemes with total information ratio $\Omega (2^{n/2}/\ell n^{3/4}\sqrt{\log q})$.
LA - eng
KW - secret sharing schemes; matroids; matroid ports
UR - http://eudml.org/doc/297215
ER -
References
top- Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N., 10.1007/978-3-030-17659-4_15, In: Advances in Cryptology - EUROCRYPT 2019, Lect. Notes Comput. Sci. 11478 (2019), Springer, pp. 441-471. MR3964688DOI10.1007/978-3-030-17659-4_15
- Babai, L., Gál, A., Wigderson, A., 10.1007/s004930050058, Combinatorica 19 (1999), 301-319. MR1723251DOI10.1007/s004930050058
- Bansal, N., Pendavingh, R. A., Pol, J. G. van der, 10.1007/s00493-014-3029-z, Combinatorica 49 (2013), 675-694. MR3186782DOI10.1007/s00493-014-3029-z
- Beimel, A., 10.1007/978-3-642-20901-7_2, In: IWCC 2011, Lect. Notes Comput. Sci. 6639 (2019), Springer, pp. 11-46. MR2834691DOI10.1007/978-3-642-20901-7_2
- Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I., 10.1007/978-3-642-20901-7_2, In: TCC, Lect. Notes Comput. Sci. 8349 (2019), Springer, pp. 394-418. MR3183548DOI10.1007/978-3-642-20901-7_2
- Beimel, A., Chor, B., 10.1109/18.335890, IEEE Trans. Inform. Theory 40 (1994), 3, 786-794. MR1295314DOI10.1109/18.335890
- Beimel, A., Livne, N., 10.1109/tit.2008.921708, IEEE Trans. Inform. Theory 54 (2008), 6, 2626-2643. MR2449268DOI10.1109/tit.2008.921708
- Beimel, A., Livne, N., Padró, C., 10.1007/978-3-540-78524-8_12, In: TCC 2008, Lect. Notes Comput. Sci. 4948 (2008), Springer, pp. 194-212. MR2494143DOI10.1007/978-3-540-78524-8_12
- Ben-Efraim, A., 10.1016/j.disc.2016.02.012, Discrete Math. 339 (2016), 8, 2136-2145. MR3500143DOI10.1016/j.disc.2016.02.012
- Benaloh, J. C., Leichter, J., 10.1007/0-387-34799-2_3, In: CRYPTO'88, Lect. Notes Comput. Sci. 403 (1988), Springer, pp. 27-35. MR1046379DOI10.1007/0-387-34799-2_3
- Blakley, G. R., 10.1109/mark.1979.8817296, In: AFIPS Conference Proc. 48 (1979), pp. 313-317. DOI10.1109/mark.1979.8817296
- Blundo, C., Santis, A. De, Stinson, D. R., Vaccaro, U., 10.1007/bf00204801, J. of Cryptology 8 (1995), 1, 39-64. MR1319955DOI10.1007/bf00204801
- Brickell, E. F., Davenport, D. M., 10.1007/bf00196772, J. of Cryptology 4 (1991), 73, 123-134. MR1062240DOI10.1007/bf00196772
- Csirmaz, L., 10.1007/s001459900029, J. Cryptology 1 (1997), 4, 223-231. MR1476611DOI10.1007/s001459900029
- Csirmaz, L., Ligeti, P., Tardos, G., 10.1007/s00373-014-1448-7, Graphs Combinator. 31 (2015), 5, 1335-1346. MR3386012DOI10.1007/s00373-014-1448-7
- Erdös, P., Pyber, L., 10.1016/s0012-365x(96)00124-0, Discrete Math. 170 (1997), 1-3, 249-251. MR1452952DOI10.1016/s0012-365x(96)00124-0
- Farràs, O., Kaced, T., Martín, S., Padró, C., 10.1007/978-3-319-78381-9_22, In: Advances in Cryptology - Eurocrypt 2018, volume 10820 Lecture Notes in Comput. Sci. 10820 (2018), Springer, pp. 597-621. MR3794799DOI10.1007/978-3-319-78381-9_22
- Farràs, O., Martí-Farré, J., Padró, C., 10.1007/s00145-011-9101-6, J. Cryptology 25 (2012), 434-463. MR2900407DOI10.1007/s00145-011-9101-6
- Gürpinar, E., Romashchenko, A., How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma., In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1377-1381.
- Graham, R. L., Sloane, N. J. A., 10.1109/tit.1980.1056141, IEEE Trans. Inform. Theory 26 (1980), 1, 37-43. MR0560390DOI10.1109/tit.1980.1056141
- Ingleton, A. W., Representation of matroids., In: Combinatorial Mathematics and its Applications, (D. J. A. Welsh, ed.), Academic Press, London 1971, pp. 149-167. MR0278974
- Jackson, W.-A., Martin, K. M., 10.1007/bf01388562, Codes Cryptography 4 (1994), 1, 83-95. MR1260371DOI10.1007/bf01388562
- Korshunov, A. D., 10.1070/rm2003v058n05abeh000667, Russ. Math. Surv. 58 (2003), 5, 929-1001. MR2035720DOI10.1070/rm2003v058n05abeh000667
- Knuth, D. E., 10.1016/0097-3165(74)90063-6, J. Combinator. Theory, Ser. A 16 (1974), 3, 398-400. MR0335312DOI10.1016/0097-3165(74)90063-6
- Liu, T., Vaikuntanathan, V., Breaking the circuit-size barrier in secret sharing., In: 50th STOC 2018, pp. 699-708. MR3826287
- Martí-Farré, J., Padró, C., , Electr. J. Comb. 11 (2004), 1. MR2097338DOI
- Martí-Farré, J., Padró, C., 10.1007/s10623-008-9264-9, Des. Codes Cryptography 52 (2009), 1, 1-14. MR2496243DOI10.1007/s10623-008-9264-9
- Martí-Farré, J., Padró, C., 10.1007/s10623-008-9264-9, J. Math. Cryptology 4 (2010), 2, 95-120. MR2729351DOI10.1007/s10623-008-9264-9
- Matúš, F., 10.1080/03081079308935205, Int. J. Gen. Syst. 22 (1994), 185-196. DOI10.1080/03081079308935205
- Matúš, F., 10.1016/s0012-365x(99)00004-7, Discrete Math. 203 (1999), 169-194. MR1696241DOI10.1016/s0012-365x(99)00004-7
- Matúš, F., 10.1016/j.disc.2006.11.013, Discrete Math. 307 (2007), 2464-2477. MR2359593DOI10.1016/j.disc.2006.11.013
- Mayhew, D., Newman, M., Welsh, D., Whittle, G., 10.1016/j.ejc.2011.01.016, Eur. J. Comb. 32 (2011), 6, 882-890. MR2821559DOI10.1016/j.ejc.2011.01.016
- Oxley, J. G., Matroid Theory. Second Edition., Oxford Graduate Texts in Mathematics 21, The Clarendon Press, Oxford 2011. MR2849819
- Padró, C., Lecture notes in secret sharing., Cryptology ePrint Archive, Report 2012/674 (2912).
- Seymour, P. D., 10.1093/qmath/27.4.407, Quart. J. Math. Oxford Ser. 27 (1976), 407-413. MR0429611DOI10.1093/qmath/27.4.407
- Shamir, A., 10.1145/359168.359176, Comm. ACM 22 (1979), 612-613. MR0549252DOI10.1145/359168.359176
- Simonis, J., Ashikhmin, A., 10.1023/a:1008244215660, Designs Codes Cryptogr. 14 (1998), 2, 179-197. MR1614357DOI10.1023/a:1008244215660
- Wegener, I., The Complexity of Boolean Functions., Wiley-Teubner, 1987. Zbl0623.94018MR0905473
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.