Displaying similar documents to “Secret sharing schemes for ports of matroids of rank 3”

The universal tropicalization and the Berkovich analytification

Jeffrey Giansiracusa, Noah Giansiracusa (2022)

Kybernetika

Similarity:

Given an integral scheme X over a non-archimedean valued field k , we construct a universal closed embedding of X into a k -scheme equipped with a model over the field with one element 𝔽 1 (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of X by previous work of the authors, and we show that the set-theoretic tropicalization of X with respect to this universal embedding is the Berkovich analytification X an . Moreover, using the scheme-theoretic...

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new...

A note on the multiplier ideals of monomial ideals

Cheng Gong, Zhongming Tang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 [ x 1 , ... , x n ] be a monomial ideal and 𝒥 ( 𝔞 c ) the multiplier ideal of 𝔞 with coefficient c . Then 𝒥 ( 𝔞 c ) is also a monomial ideal of [ x 1 , ... , x n ] , and the equality 𝒥 ( 𝔞 c ) = 𝔞 implies that 0 < c < n + 1 . We mainly discuss the problem when 𝒥 ( 𝔞 ) = 𝔞 or 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 for all 0 < ε < 1 . It is proved that if 𝒥 ( 𝔞 ) = 𝔞 then 𝔞 is principal, and if 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 holds for all 0 < ε < 1 then 𝔞 = ( x 1 , ... , x n ) . One global result is also obtained. Let 𝔞 ˜ be the ideal sheaf on n - 1 associated with 𝔞 . Then it is proved that the equality 𝒥 ( 𝔞 ˜ ) = 𝔞 ˜ implies that 𝔞 ˜ is principal.

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the...

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

Models of group schemes of roots of unity

A. Mézard, M. Romagny, D. Tossici (2013)

Annales de l’institut Fourier

Similarity:

Let 𝒪 K be a discrete valuation ring of mixed characteristics ( 0 , p ) , with residue field k . Using work of Sekiguchi and Suwa, we construct some finite flat 𝒪 K -models of the group scheme μ p n , K of p n -th roots of unity, which we call . We carefully set out the general framework and algebraic properties of this construction. When k is perfect and 𝒪 K is a complete totally ramified extension of the ring of Witt vectors W ( k ) , we provide a parallel study of the Breuil-Kisin modules of finite flat models of μ p n , K ,...

On the real X -ranks of points of n ( ) with respect to a real variety X n

Edoardo Ballico (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let  X n be an integral and non-degenerate m -dimensional variety defined over . For any P n ( ) the real X -rank r X , ( P ) is the minimal cardinality of S X ( ) such that P S . Here we extend to the real case an upper bound for the X -rank due to Landsberg and Teitler.

Depth and Stanley depth of the facet ideals of some classes of simplicial complexes

Xiaoqi Wei, Yan Gu (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ n , d (resp. Δ n , d ' ) be the simplicial complex and the facet ideal I n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - d + 1 x n ) (resp. J n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - 2 d + 2 k + 1 x n - d + 2 k , x n - d + k + 1 x n x 1 x k ) ). When d 2 k + 1 , we give the exact formulas to compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d t for all t 1 . When d = 2 k , we compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d , and give lower bounds for the depth and Stanley depth of quotient rings S / I n , d t for all t 1 .

The strong persistence property and symbolic strong persistence property

Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal in a commutative Noetherian ring R . Then the ideal I has the strong persistence property if and only if ( I k + 1 : R I ) = I k for all k , and I has the symbolic strong persistence property if and only if ( I ( k + 1 ) : R I ( 1 ) ) = I ( k ) for all k , where I ( k ) denotes the k th symbolic power of I . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial...

Some generalizations of Olivier's theorem

Alain Faisant, Georges Grekos, Ladislav Mišík (2016)

Mathematica Bohemica

Similarity:

Let n = 1 a n be a convergent series of positive real numbers. L. Olivier proved that if the sequence ( a n ) is non-increasing, then lim n n a n = 0 . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having lim n n a n = 0 ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence...

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

Similarity:

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions...

Dimension of weakly expanding points for quadratic maps

Samuel Senti (2003)

Bulletin de la Société Mathématique de France

Similarity:

For the real quadratic map P a ( x ) = x 2 + a and a given ϵ &gt; 0 a point x has good expansion properties if any interval containing x also contains a neighborhood  J of x with P a n | J univalent, with bounded distortion and B ( 0 , ϵ ) P a n ( J ) for some n . The ϵ -weakly expanding set is the set of points which do not have good expansion properties. Let α denote the negative fixed point and M the first return time of the critical orbit to [ α , - α ] . We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff...

The linear syzygy graph of a monomial ideal and linear resolutions

Erfan Manouchehri, Ali Soleyman Jahan (2021)

Czechoslovak Mathematical Journal

Similarity:

For each squarefree monomial ideal I S = k [ x 1 , ... , x n ] , we associate a simple finite graph G I by using the first linear syzygies of I . The nodes of G I are the generators of I , and two vertices u i and u j are adjacent if there exist variables x , y such that x u i = y u j . In the cases, where G I is a cycle or a tree, we show that I has a linear resolution if and only if I has linear quotients and if and only if I is variable-decomposable. In addition, with the same assumption on G I , we characterize all squarefree monomial ideals...

Run-length function of the Bolyai-Rényi expansion of real numbers

Rao Li, Fan Lü, Li Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

By iterating the Bolyai-Rényi transformation T ( x ) = ( x + 1 ) 2 ( mod 1 ) , almost every real number x [ 0 , 1 ) can be expanded as a continued radical expression x = - 1 + x 1 + x 2 + + x n + with digits x n { 0 , 1 , 2 } for all n . For any real number x [ 0 , 1 ) and digit i { 0 , 1 , 2 } , let r n ( x , i ) be the maximal length of consecutive i ’s in the first n digits of the Bolyai-Rényi expansion of x . We study the asymptotic behavior of the run-length function r n ( x , i ) . We prove that for any digit i { 0 , 1 , 2 } , the Lebesgue measure of the set D ( i ) = x [ 0 , 1 ) : lim n r n ( x , i ) log n = 1 log θ i is 1 , where θ i = 1 + 4 i + 1 . We also obtain that the level set E α ( i ) = x [ 0 , 1 ) : lim n r n ( x , i ) log n = α is of full Hausdorff...