Lanczos-like algorithm for the time-ordered exponential: The -inverse problem
Pierre-Louis Giscard; Stefano Pozza
Applications of Mathematics (2020)
- Volume: 65, Issue: 6, page 807-827
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGiscard, Pierre-Louis, and Pozza, Stefano. "Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem." Applications of Mathematics 65.6 (2020): 807-827. <http://eudml.org/doc/297223>.
@article{Giscard2020,
abstract = {The time-ordered exponential of a time-dependent matrix $\mathsf \{A\}(t)$ is defined as the function of $\mathsf \{A\}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf \{A\}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green’s function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.},
author = {Giscard, Pierre-Louis, Pozza, Stefano},
journal = {Applications of Mathematics},
keywords = {time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution},
language = {eng},
number = {6},
pages = {807-827},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem},
url = {http://eudml.org/doc/297223},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Giscard, Pierre-Louis
AU - Pozza, Stefano
TI - Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 6
SP - 807
EP - 827
AB - The time-ordered exponential of a time-dependent matrix $\mathsf {A}(t)$ is defined as the function of $\mathsf {A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf {A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green’s function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.
LA - eng
KW - time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution
UR - http://eudml.org/doc/297223
ER -
References
top- Benner, P., Cohen, A., Ohlberger, M., (eds.), K. Willcox, 10.1137/1.9781611974829, Computational Science & Engineering 15. SIAM, Philadelphia (2017). (2017) Zbl1378.65010MR3672144DOI10.1137/1.9781611974829
- Blanes, S., 10.1007/s11075-014-9894-0, Numer. Algorithms 69 (2015), 271-290. (2015) Zbl1317.65144MR3350382DOI10.1007/s11075-014-9894-0
- Bouhamidi, A., 10.1051/proc:072007, ESAIM, Proc. 20 (2007), 72-82. (2007) Zbl1359.35233MR2402761DOI10.1051/proc:072007
- Corless, M. J., Frazho, A. E., 10.1201/9780203911372, Pure and Applied Mathematics, Marcel Dekker 254. Marcel Dekker, New York (2003). (2003) Zbl1050.93001DOI10.1201/9780203911372
- Fasshauer, G. E., Ye, Q., 10.1007/s10444-011-9264-6, Adv. Comput. Math. 38 (2013), 891-921. (2013) Zbl1267.41018MR3044643DOI10.1007/s10444-011-9264-6
- Giscard, P.-L., On the solutions of linear Volterra equations of the second kind with sum kernels, (to appear) in J. Integral Equations Appl. Available at https://arxiv.org/abs/1909.04033v2 (2020), 25 pages.
- Giscard, P.-L., Lui, K., Thwaite, S. J., Jaksch, D., 10.1063/1.4920925, J. Math. Phys. 56 (2015), Article ID 053503, 18 pages. (2015) Zbl1316.15010MR3391006DOI10.1063/1.4920925
- Giscard, P.-L., Pozza, S., Lanczos-like method for the time-ordered exponential, Available at https://arxiv.org/abs/1909.03437 (2019), 26 pages. (2019) MR4191370
- Giscard, P.-L., Pozza, S., Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method, Available at https://arxiv.org/abs/2002.06973 (2020), 23 pages. (2020)
- Golub, G. H., Meurant, G., Matrices, moments and quadrature, Numerical Analysis 1993 Pitman Research Notes in Mathematics Series 303. Longman Scientific & Technical, Harlow (1994), 105-156. (1994) Zbl0795.65019MR1267758
- Golub, G. H., Meurant, G., 10.1515/9781400833887, Princeton Series in Applied Mathematics 30. Princeton University Press, Princeton (2010). (2010) Zbl1217.65056MR2582949DOI10.1515/9781400833887
- Gripenberg, G., Londen, S.-O., Staffans, O., 10.1017/CBO9780511662805, Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press, Cambridge (1990). (1990) Zbl0695.45002MR1050319DOI10.1017/CBO9780511662805
- Kwakernaak, H., Sivan, R., Linear Optimal Control Systems, Wiley-Interscience, New York (1972). (1972) Zbl0276.93001MR0406607
- Liesen, J., Strakoš, Z., 10.1093/acprof:oso/9780199655410.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). (2013) Zbl1307.65001MR3024841DOI10.1093/acprof:oso/9780199655410.001.0001
- Linz, P., 10.1137/1.9781611970852, SIAM Studies in Applied Mathematics 7. SIAM, Philadelphia (1985). (1985) Zbl0566.65094MR0796318DOI10.1137/1.9781611970852
- Mehring, M., Weberruss, V. A., 10.1016/C2009-0-21093-2, Academic Press, London (2012). (2012) DOI10.1016/C2009-0-21093-2
- Polyanin, A. D., Manzhirov, A. V., 10.1201/9781420010558, Chapman & Hall/CRC Press, Boca Raton (2008). (2008) Zbl1154.45001MR2404728DOI10.1201/9781420010558
- Razdolsky, L., 10.1007/978-3-319-41909-1_2, Probability Based High Temperature Engineering Springer, Cham (2017), 55-100. (2017) DOI10.1007/978-3-319-41909-1_2
- Reid, W. T., 10.2140/pjm.1963.13.665, Pac. J. Math. 13 (1963), 665-685. (1963) Zbl0119.07401MR0155049DOI10.2140/pjm.1963.13.665
- Rivas, Á., Huelga, S. F., 10.1007/978-3-642-23354-8, SpringerBriefs in Physics. Springer, Berlin (2012). (2012) Zbl1246.81006MR2848650DOI10.1007/978-3-642-23354-8
- Saad, Y., 10.1137/1.9780898718003, SIAM, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
- Schwartz, L., Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg IX-X. Hermann, Paris (1966), French. (1966) Zbl0149.09501MR0209834
- Sezer, M., 10.1080/0020739940250501, Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. (1994) Zbl0823.45005MR1295324DOI10.1080/0020739940250501
- Tricomi, F. G., Integral Equations, Dover Publications, New York (1985). (1985) Zbl0078.09404MR0809184
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.