Naturally reductive homogeneous -metric spaces
M. Parhizkar; H.R. Salimi Moghaddam
Archivum Mathematicum (2021)
- Volume: 057, Issue: 1, page 1-11
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topParhizkar, M., and Salimi Moghaddam, H.R.. "Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces." Archivum Mathematicum 057.1 (2021): 1-11. <http://eudml.org/doc/297246>.
@article{Parhizkar2021,
abstract = {In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.},
author = {Parhizkar, M., Salimi Moghaddam, H.R.},
journal = {Archivum Mathematicum},
keywords = {naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha ,\beta )$-metric},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
url = {http://eudml.org/doc/297246},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Parhizkar, M.
AU - Salimi Moghaddam, H.R.
TI - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 1
SP - 1
EP - 11
AB - In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
LA - eng
KW - naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha ,\beta )$-metric
UR - http://eudml.org/doc/297246
ER -
References
top- Asanov, G.S., Finsleroid space with angle and scalar product, Publ. Math. Debrecen 67 (2005), 209–252. (2005) MR2163126
- Asanov, G.S., 10.1016/S0034-4877(06)80053-4, Rep. Math. Phys. 58 (2006), 275–300. (2006) MR2281541DOI10.1016/S0034-4877(06)80053-4
- Bao, D., Chern, S.S., Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, Berlin, 2000. (2000) Zbl0954.53001MR1747675
- Chern, S.S., Shen, Z., Riemann-Finsler geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. (2005) MR2169595
- Deng, S., Hou, Z., 10.1088/0305-4470/37/34/004, J. Phys. A: Math. Gen. 37 (2004), 8245–8253. (2004) Zbl1062.58007MR2092795DOI10.1088/0305-4470/37/34/004
- Deng, S., Hou, Z., 10.1088/0305-4470/37/15/004, J. Phys. A: Math. Gen. 37 (2004), 4353–4360. (2004) Zbl1049.83005MR2063598DOI10.1088/0305-4470/37/15/004
- Deng, S., Hou, Z., 10.1007/s00229-009-0314-z, Manuscripta Math. 131 (2010), 215–229. (2010) MR2574999DOI10.1007/s00229-009-0314-z
- Kikuchi, S., On the condition that a space with -metric be locally Minkowskian, Tensor, N.S. 33 (1979), 142–246. (1979) MR0577431
- Kobayashi, S., Nomizu, K., Foundations of differential geometry, Wiley-Interscience, New York, 1969. (1969) Zbl0175.48504MR0152974
- Latifi, D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), 1421–1433. (2007) MR2289656DOI10.1016/j.geomphys.2006.11.004
- Latifi, D., 10.1016/j.geomphys.2010.08.002, J. Geom. Phys. 60 (2010), 1968–1973. (2010) MR2735283DOI10.1016/j.geomphys.2010.08.002
- Matsumoto, M., The Berwald connection of a Finsler space with an -metric, Tensor, N.S. 50 (1991), 18–21. (1991) MR1156480
- Matsumoto, M., 10.1016/0034-4877(92)90005-L, Rep. Math. Phys. 31 (1992), 43–83. (1992) MR1208489DOI10.1016/0034-4877(92)90005-L
- Moghaddam, H.R. Salimi, 10.1088/1751-8113/41/27/275206, J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. (2008) MR2455543DOI10.1088/1751-8113/41/27/275206
- Randers, G., On an asymmetrical metric in the four-space of general relativity, On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. (1941) Zbl0027.18101MR0003371
- Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001. (2001) Zbl0974.53002MR1845637
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.