Naturally reductive homogeneous ( α , β ) -metric spaces

M. Parhizkar; H.R. Salimi Moghaddam

Archivum Mathematicum (2021)

  • Volume: 057, Issue: 1, page 1-11
  • ISSN: 0044-8753

Abstract

top
In the present paper we study naturally reductive homogeneous ( α , β ) -metric spaces. We show that for homogeneous ( α , β ) -metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous ( α , β ) -metric spaces.

How to cite

top

Parhizkar, M., and Salimi Moghaddam, H.R.. "Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces." Archivum Mathematicum 057.1 (2021): 1-11. <http://eudml.org/doc/297246>.

@article{Parhizkar2021,
abstract = {In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.},
author = {Parhizkar, M., Salimi Moghaddam, H.R.},
journal = {Archivum Mathematicum},
keywords = {naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha ,\beta )$-metric},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
url = {http://eudml.org/doc/297246},
volume = {057},
year = {2021},
}

TY - JOUR
AU - Parhizkar, M.
AU - Salimi Moghaddam, H.R.
TI - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 1
SP - 1
EP - 11
AB - In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
LA - eng
KW - naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha ,\beta )$-metric
UR - http://eudml.org/doc/297246
ER -

References

top
  1. Asanov, G.S., Finsleroid space with angle and scalar product, Publ. Math. Debrecen 67 (2005), 209–252. (2005) MR2163126
  2. Asanov, G.S., 10.1016/S0034-4877(06)80053-4, Rep. Math. Phys. 58 (2006), 275–300. (2006) MR2281541DOI10.1016/S0034-4877(06)80053-4
  3. Bao, D., Chern, S.S., Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, Berlin, 2000. (2000) Zbl0954.53001MR1747675
  4. Chern, S.S., Shen, Z., Riemann-Finsler geometry, Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. (2005) MR2169595
  5. Deng, S., Hou, Z., 10.1088/0305-4470/37/34/004, J. Phys. A: Math. Gen. 37 (2004), 8245–8253. (2004) Zbl1062.58007MR2092795DOI10.1088/0305-4470/37/34/004
  6. Deng, S., Hou, Z., 10.1088/0305-4470/37/15/004, J. Phys. A: Math. Gen. 37 (2004), 4353–4360. (2004) Zbl1049.83005MR2063598DOI10.1088/0305-4470/37/15/004
  7. Deng, S., Hou, Z., 10.1007/s00229-009-0314-z, Manuscripta Math. 131 (2010), 215–229. (2010) MR2574999DOI10.1007/s00229-009-0314-z
  8. Kikuchi, S., On the condition that a space with ( α , β ) -metric be locally Minkowskian, Tensor, N.S. 33 (1979), 142–246. (1979) MR0577431
  9. Kobayashi, S., Nomizu, K., Foundations of differential geometry, Wiley-Interscience, New York, 1969. (1969) Zbl0175.48504MR0152974
  10. Latifi, D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), 1421–1433. (2007) MR2289656DOI10.1016/j.geomphys.2006.11.004
  11. Latifi, D., 10.1016/j.geomphys.2010.08.002, J. Geom. Phys. 60 (2010), 1968–1973. (2010) MR2735283DOI10.1016/j.geomphys.2010.08.002
  12. Matsumoto, M., The Berwald connection of a Finsler space with an ( α , β ) -metric, Tensor, N.S. 50 (1991), 18–21. (1991) MR1156480
  13. Matsumoto, M., 10.1016/0034-4877(92)90005-L, Rep. Math. Phys. 31 (1992), 43–83. (1992) MR1208489DOI10.1016/0034-4877(92)90005-L
  14. Moghaddam, H.R. Salimi, 10.1088/1751-8113/41/27/275206, J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. (2008) MR2455543DOI10.1088/1751-8113/41/27/275206
  15. Randers, G., On an asymmetrical metric in the four-space of general relativity, On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. (1941) Zbl0027.18101MR0003371
  16. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001. (2001) Zbl0974.53002MR1845637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.