Mobile robot localization under stochastic communication protocol
Kybernetika (2020)
- Volume: 56, Issue: 1, page 152-169
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLu, Yanyang, and Shen, Bo. "Mobile robot localization under stochastic communication protocol." Kybernetika 56.1 (2020): 152-169. <http://eudml.org/doc/297250>.
@article{Lu2020,
abstract = {In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the $H_\{\infty \}$ performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform.},
author = {Lu, Yanyang, Shen, Bo},
journal = {Kybernetika},
keywords = {localization; mobile robot; Riccati equations; stochastic communication protocol},
language = {eng},
number = {1},
pages = {152-169},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Mobile robot localization under stochastic communication protocol},
url = {http://eudml.org/doc/297250},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Lu, Yanyang
AU - Shen, Bo
TI - Mobile robot localization under stochastic communication protocol
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 152
EP - 169
AB - In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the $H_{\infty }$ performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform.
LA - eng
KW - localization; mobile robot; Riccati equations; stochastic communication protocol
UR - http://eudml.org/doc/297250
ER -
References
top- Chen, J., Qiao, H., Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system., IEEE Trans. Systems Man Cybernet.: Systems (2020), 1-14.
- Chen, S. Y., 10.1109/tie.2011.2162714, IEEE Trans. Industr. Electron. 59 (2012), 11, 4409-4420. DOI10.1109/tie.2011.2162714
- Chen, W., Ding, D., Ge, X., Han, Q., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. DOI10.1109/tcyb.2018.2885567
- Ding, D., Han, Q., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
- Ding, D., Wang, Z., Han, Q., 10.1016/j.automatica.2019.04.025, Automatica 106 (2019), 221-229. MR3952583DOI10.1016/j.automatica.2019.04.025
- Ding, D., Wang, Z., Han, Q., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
- Ding, D., Wang, Z., Han, Q., Wei, G., 10.1109/tsmc.2016.2616544, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 5, 779-789. DOI10.1109/tsmc.2016.2616544
- Ding, D., Wang, Z., Ho, D. W. C., Wei, G., 10.1016/j.automatica.2016.12.026, Automatica 78 (2017), 231-240. MR3614098DOI10.1016/j.automatica.2016.12.026
- Dong, H., Hou, N., Wang, Z., Liu, H., 10.1002/rnc.4382, Int. J.Robust Nonlinear Control 29 (2019), 1, 117-134. MR3886112DOI10.1002/rnc.4382
- Ge, X., Han, Q., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
- Ge, X., Han, Q., Wang, Z., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 49(2019), 1, 171-183. DOI10.1109/tcyb.2016.2570860
- Ge, X., Han, Q., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
- Guan, R. P., Ristic, B., Wang, L., Moran, B., Evans, R., 10.1080/00207179.2016.1244727, Int. J. Control 90 (2017), 4, 888-900. MR3613055DOI10.1080/00207179.2016.1244727
- Hu, L., Wang, Z., Han, Q., Liu, X., 10.1016/j.automatica.2017.09.028, Automatica 87 (2018), 176-183. MR3733913DOI10.1016/j.automatica.2017.09.028
- Huang, C., Shen, B., Chen, H., Shu, H., 10.1016/j.jfranklin.2019.08.029, J. Franklin Inst. 356 (2019), 15, 8870-8889. MR4010163DOI10.1016/j.jfranklin.2019.08.029
- Khan, A., Rinner, B., Cavallaro, A., 10.1109/tcyb.2016.2628161, IEEE Trans. Cybernet. 48 (2018), 1, 187-198. DOI10.1109/tcyb.2016.2628161
- Kim, Y., An, J., Lee, J., 10.1109/tie.2017.2752137, IEEE Trans. Industr. Electron. 65 (2018), 4, 3346-3354. DOI10.1109/tie.2017.2752137
- Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P., 10.1177/0278364914554813, Int. J. Robotics Res. 34 (2015), 3, 314-334. DOI10.1177/0278364914554813
- Li, B., Wang, Z., Han, Q., Liu, H., 10.1109/tcyb.2018.2839360, IEEE Trans. Cybernet. 49 (2019), 9, 3242-3254. MR3998230DOI10.1109/tcyb.2018.2839360
- Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J., 10.1109/tcyb.2018.2818941, IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR3891660DOI10.1109/tcyb.2018.2818941
- Li, R., Qiao, H., 10.1109/tmech.2019.2945135, IEEE/ASME Trans. Mechatronics 24 (2019), 6, 2718-2732. DOI10.1109/tmech.2019.2945135
- Li, X., Chen, W., Chan, C., Li, B., Song, X., 10.1016/j.inffus.2018.04.006, Inform. Fusion 46 (2019), 51-62. DOI10.1016/j.inffus.2018.04.006
- Liu, H., Sun, F., Fang, B., Zhang, X., 10.1109/tim.2016.2618978, IEEE Trans. Instrument. Measurement 66 (2017), 1, 2-13. DOI10.1109/tim.2016.2618978
- Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., Milford, M. J., 10.1109/tro.2015.2496823, IEEE Trans. Robotics 32 (2016), 1, 1-19. DOI10.1109/tro.2015.2496823
- Luo, R. C., Hsiao, T. J., 10.1109/tie.2018.2833021, IEEE Trans. Industr. Electron. 66 (2019), 3, 1940-1951. DOI10.1109/tie.2018.2833021
- Luo, Y., Wang, Z., Wei, G., Alsaadi, F. E., Hayat, T., 10.1016/j.neunet.2016.01.001, Neural Networks 77 (2016), 70-79. DOI10.1016/j.neunet.2016.01.001
- Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E., 10.1002/rnc.4535, Int.J. Robust Nonlinear Control 29 (2019), 10, 2941-2959. MR3973575DOI10.1002/rnc.4535
- Ma, L., Wang, Z., Han, Q., Liu, Y., 10.1016/j.automatica.2018.09.028, Automatica 98 (2018), 358-362. MR3866952DOI10.1016/j.automatica.2018.09.028
- Shen, B., Wang, Z., Qiao, H., 10.1109/tnnls.2016.2516030, IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. MR3721783DOI10.1109/tnnls.2016.2516030
- Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., Peng, Y., 10.1016/j.automatica.2018.11.010, Automatica 100 (2019), 144-152. MR3881144DOI10.1016/j.automatica.2018.11.010
- Wan, X., Wang, Z., Han, Q., Wu, M., 10.1109/tnnls.2018.2885723, IEEE Trans. Neural Networks Learning Systems 30 (2019), 9, 2840-2852. MR4001276DOI10.1109/tnnls.2018.2885723
- Wan, X., Wang, Z., Han, Q., Wu, M., 10.1109/tcsi.2018.2815269, IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. MR3854691DOI10.1109/tcsi.2018.2815269
- Wang, Z., Dong, H., Shen, B., Gao, H., 10.1109/tac.2013.2241492, IEEE Trans. Automat. Control 58 (2013), 7, 1707-1718. MR3072855DOI10.1109/tac.2013.2241492
- Xu, W., Ho, D. W. C., Li, L., Cao, J., 10.1109/tcyb.2015.2510746, IEEE Trans. Cybernetics 47 (2017), 1, 212-223. DOI10.1109/tcyb.2015.2510746
- Yang, F., Wang, Z., Lauria, S., Liu, X., 10.1243/09596518jsce791, Proc. Inst. Mechanical Engineers, Part I: J. Systems Control Engrg. 223 (2009), 8, 1067-1080. DOI10.1243/09596518jsce791
- Zhang, X., Han, Q., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. DOI10.1109/tcyb.2015.2487420
- Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/tcyb.2015.2487420, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3748030DOI10.1109/tcyb.2015.2487420
- Zou, L., Wang, Z., Gao, H., 10.1016/j.automatica.2015.10.045, Automatica 63 (2016), 366-373. MR3430004DOI10.1016/j.automatica.2015.10.045
- Zou, L., Wang, Z., Gao, H., 10.1016/j.automatica.2016.07.025, Automatica 74 (2016), 341-348. MR3569400DOI10.1016/j.automatica.2016.07.025
- Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.