Mobile robot localization under stochastic communication protocol

Yanyang Lu; Bo Shen

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 152-169
  • ISSN: 0023-5954

Abstract

top
In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the H performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform.

How to cite

top

Lu, Yanyang, and Shen, Bo. "Mobile robot localization under stochastic communication protocol." Kybernetika 56.1 (2020): 152-169. <http://eudml.org/doc/297250>.

@article{Lu2020,
abstract = {In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the $H_\{\infty \}$ performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform.},
author = {Lu, Yanyang, Shen, Bo},
journal = {Kybernetika},
keywords = {localization; mobile robot; Riccati equations; stochastic communication protocol},
language = {eng},
number = {1},
pages = {152-169},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Mobile robot localization under stochastic communication protocol},
url = {http://eudml.org/doc/297250},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Lu, Yanyang
AU - Shen, Bo
TI - Mobile robot localization under stochastic communication protocol
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 152
EP - 169
AB - In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the robot localization problem by designing a time-varying filter for the mobile robot such that the filtering error dynamics satisfies the $H_{\infty }$ performance requirement over a finite horizon. First, a Markov chain is introduced to model the transmission of measurement data. Then, by utilizing the stochastic analysis technique and completing square approach, the gain matrices of the desired filter are designed in term of a solution to two coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter design scheme is shown in an experimental platform.
LA - eng
KW - localization; mobile robot; Riccati equations; stochastic communication protocol
UR - http://eudml.org/doc/297250
ER -

References

top
  1. Chen, J., Qiao, H., Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system., IEEE Trans. Systems Man Cybernet.: Systems (2020), 1-14. 
  2. Chen, S. Y., 10.1109/tie.2011.2162714, IEEE Trans. Industr. Electron. 59 (2012), 11, 4409-4420. DOI10.1109/tie.2011.2162714
  3. Chen, W., Ding, D., Ge, X., Han, Q., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. DOI10.1109/tcyb.2018.2885567
  4. Ding, D., Han, Q., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
  5. Ding, D., Wang, Z., Han, Q., 10.1016/j.automatica.2019.04.025, Automatica 106 (2019), 221-229. MR3952583DOI10.1016/j.automatica.2019.04.025
  6. Ding, D., Wang, Z., Han, Q., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
  7. Ding, D., Wang, Z., Han, Q., Wei, G., 10.1109/tsmc.2016.2616544, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 5, 779-789. DOI10.1109/tsmc.2016.2616544
  8. Ding, D., Wang, Z., Ho, D. W. C., Wei, G., 10.1016/j.automatica.2016.12.026, Automatica 78 (2017), 231-240. MR3614098DOI10.1016/j.automatica.2016.12.026
  9. Dong, H., Hou, N., Wang, Z., Liu, H., 10.1002/rnc.4382, Int. J.Robust Nonlinear Control 29 (2019), 1, 117-134. MR3886112DOI10.1002/rnc.4382
  10. Ge, X., Han, Q., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
  11. Ge, X., Han, Q., Wang, Z., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 49(2019), 1, 171-183. DOI10.1109/tcyb.2016.2570860
  12. Ge, X., Han, Q., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
  13. Guan, R. P., Ristic, B., Wang, L., Moran, B., Evans, R., 10.1080/00207179.2016.1244727, Int. J. Control 90 (2017), 4, 888-900. MR3613055DOI10.1080/00207179.2016.1244727
  14. Hu, L., Wang, Z., Han, Q., Liu, X., 10.1016/j.automatica.2017.09.028, Automatica 87 (2018), 176-183. MR3733913DOI10.1016/j.automatica.2017.09.028
  15. Huang, C., Shen, B., Chen, H., Shu, H., 10.1016/j.jfranklin.2019.08.029, J. Franklin Inst. 356 (2019), 15, 8870-8889. MR4010163DOI10.1016/j.jfranklin.2019.08.029
  16. Khan, A., Rinner, B., Cavallaro, A., 10.1109/tcyb.2016.2628161, IEEE Trans. Cybernet. 48 (2018), 1, 187-198. DOI10.1109/tcyb.2016.2628161
  17. Kim, Y., An, J., Lee, J., 10.1109/tie.2017.2752137, IEEE Trans. Industr. Electron. 65 (2018), 4, 3346-3354. DOI10.1109/tie.2017.2752137
  18. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P., 10.1177/0278364914554813, Int. J. Robotics Res. 34 (2015), 3, 314-334. DOI10.1177/0278364914554813
  19. Li, B., Wang, Z., Han, Q., Liu, H., 10.1109/tcyb.2018.2839360, IEEE Trans. Cybernet. 49 (2019), 9, 3242-3254. MR3998230DOI10.1109/tcyb.2018.2839360
  20. Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J., 10.1109/tcyb.2018.2818941, IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR3891660DOI10.1109/tcyb.2018.2818941
  21. Li, R., Qiao, H., 10.1109/tmech.2019.2945135, IEEE/ASME Trans. Mechatronics 24 (2019), 6, 2718-2732. DOI10.1109/tmech.2019.2945135
  22. Li, X., Chen, W., Chan, C., Li, B., Song, X., 10.1016/j.inffus.2018.04.006, Inform. Fusion 46 (2019), 51-62. DOI10.1016/j.inffus.2018.04.006
  23. Liu, H., Sun, F., Fang, B., Zhang, X., 10.1109/tim.2016.2618978, IEEE Trans. Instrument. Measurement 66 (2017), 1, 2-13. DOI10.1109/tim.2016.2618978
  24. Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., Milford, M. J., 10.1109/tro.2015.2496823, IEEE Trans. Robotics 32 (2016), 1, 1-19. DOI10.1109/tro.2015.2496823
  25. Luo, R. C., Hsiao, T. J., 10.1109/tie.2018.2833021, IEEE Trans. Industr. Electron. 66 (2019), 3, 1940-1951. DOI10.1109/tie.2018.2833021
  26. Luo, Y., Wang, Z., Wei, G., Alsaadi, F. E., Hayat, T., 10.1016/j.neunet.2016.01.001, Neural Networks 77 (2016), 70-79. DOI10.1016/j.neunet.2016.01.001
  27. Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E., 10.1002/rnc.4535, Int.J. Robust Nonlinear Control 29 (2019), 10, 2941-2959. MR3973575DOI10.1002/rnc.4535
  28. Ma, L., Wang, Z., Han, Q., Liu, Y., 10.1016/j.automatica.2018.09.028, Automatica 98 (2018), 358-362. MR3866952DOI10.1016/j.automatica.2018.09.028
  29. Shen, B., Wang, Z., Qiao, H., 10.1109/tnnls.2016.2516030, IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. MR3721783DOI10.1109/tnnls.2016.2516030
  30. Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., Peng, Y., 10.1016/j.automatica.2018.11.010, Automatica 100 (2019), 144-152. MR3881144DOI10.1016/j.automatica.2018.11.010
  31. Wan, X., Wang, Z., Han, Q., Wu, M., 10.1109/tnnls.2018.2885723, IEEE Trans. Neural Networks Learning Systems 30 (2019), 9, 2840-2852. MR4001276DOI10.1109/tnnls.2018.2885723
  32. Wan, X., Wang, Z., Han, Q., Wu, M., 10.1109/tcsi.2018.2815269, IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. MR3854691DOI10.1109/tcsi.2018.2815269
  33. Wang, Z., Dong, H., Shen, B., Gao, H., 10.1109/tac.2013.2241492, IEEE Trans. Automat. Control 58 (2013), 7, 1707-1718. MR3072855DOI10.1109/tac.2013.2241492
  34. Xu, W., Ho, D. W. C., Li, L., Cao, J., 10.1109/tcyb.2015.2510746, IEEE Trans. Cybernetics 47 (2017), 1, 212-223. DOI10.1109/tcyb.2015.2510746
  35. Yang, F., Wang, Z., Lauria, S., Liu, X., 10.1243/09596518jsce791, Proc. Inst. Mechanical Engineers, Part I: J. Systems Control Engrg. 223 (2009), 8, 1067-1080. DOI10.1243/09596518jsce791
  36. Zhang, X., Han, Q., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. DOI10.1109/tcyb.2015.2487420
  37. Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/tcyb.2015.2487420, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3748030DOI10.1109/tcyb.2015.2487420
  38. Zou, L., Wang, Z., Gao, H., 10.1016/j.automatica.2015.10.045, Automatica 63 (2016), 366-373. MR3430004DOI10.1016/j.automatica.2015.10.045
  39. Zou, L., Wang, Z., Gao, H., 10.1016/j.automatica.2016.07.025, Automatica 74 (2016), 341-348. MR3569400DOI10.1016/j.automatica.2016.07.025
  40. Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.