The kh-socle of a commutative semisimple Banach algebra

Youness Hadder

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 4, page 387-399
  • ISSN: 0862-7959

Abstract

top
Let 𝒜 be a commutative complex semisimple Banach algebra. Denote by kh ( soc ( 𝒜 ) ) the kernel of the hull of the socle of 𝒜 . In this work we give some new characterizations of this ideal in terms of minimal idempotents in 𝒜 . This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.

How to cite

top

Hadder, Youness. "The kh-socle of a commutative semisimple Banach algebra." Mathematica Bohemica 145.4 (2020): 387-399. <http://eudml.org/doc/297276>.

@article{Hadder2020,
abstract = {Let $\mathcal \{A\}$ be a commutative complex semisimple Banach algebra. Denote by $\{\rm kh\}(\{\rm soc\}(\mathcal \{A\}))$ the kernel of the hull of the socle of $\mathcal \{A\}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal \{A\}$. This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.},
author = {Hadder, Youness},
journal = {Mathematica Bohemica},
keywords = {commutative Banach algebra; socle; kh-socle; inessential element},
language = {eng},
number = {4},
pages = {387-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The kh-socle of a commutative semisimple Banach algebra},
url = {http://eudml.org/doc/297276},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Hadder, Youness
TI - The kh-socle of a commutative semisimple Banach algebra
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 387
EP - 399
AB - Let $\mathcal {A}$ be a commutative complex semisimple Banach algebra. Denote by ${\rm kh}({\rm soc}(\mathcal {A}))$ the kernel of the hull of the socle of $\mathcal {A}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal {A}$. This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.
LA - eng
KW - commutative Banach algebra; socle; kh-socle; inessential element
UR - http://eudml.org/doc/297276
ER -

References

top
  1. Aiena, P., 10.1007/1-4020-2525-4, Kluwer Academic Publishers, Dordrecht (2004). (2004) Zbl1077.47001MR2070395DOI10.1007/1-4020-2525-4
  2. Alexander, J. C., 10.1112/plms/s3-18.1.1, Proc. Lond. Math. Soc., III. Ser. 18 (1968), 1-18. (1968) Zbl0184.16502MR0229040DOI10.1112/plms/s3-18.1.1
  3. Al-Moajil, A. H., 10.1155/s0161171284000855, Int. J. Math. Math. Sci. 7 (1984), 821-822. (1984) Zbl0599.46072MR0780844DOI10.1155/s0161171284000855
  4. Androulakis, G., Schlumprecht, T., 10.1112/s0024610701002769, J. Lond. Math. Soc., II. Ser. 64 (2001), 655-674. (2001) Zbl1015.46007MR1843416DOI10.1112/s0024610701002769
  5. Aupetit, B., 10.1007/978-1-4612-3048-9, Universitext. Springer, New York (1991). (1991) Zbl0715.46023MR1083349DOI10.1007/978-1-4612-3048-9
  6. Aupetit, B., Mouton, H. du T., 10.4064/sm-109-1-91-100, Studia Math. 109 (1994), 91-100. (1994) Zbl0829.46039MR1267714DOI10.4064/sm-109-1-91-100
  7. Barnes, B. A., 10.4153/cjm-1968-048-2, Can. J. Math. 20 (1968), 495-504. (1968) Zbl0159.18502MR0232208DOI10.4153/cjm-1968-048-2
  8. Barnes, B. A., 10.4153/cjm-1969-009-1, Can. J. Math. 21 (1969), 84-95. (1969) Zbl0175.44101MR0237542DOI10.4153/cjm-1969-009-1
  9. Barnes, B. A., Murphy, G. J., Smyth, M. R. F., West, T. T., Riesz and Fredholm Theory in Banach Algebras, Research Notes in Mathematics 67. Pitman Advanced Publishing Program, Boston (1982). (1982) Zbl0534.46034MR0668516
  10. Boudi, N., Hadder, Y., 10.1016/j.jmaa.2008.03.066, J. Math. Anal. Appl. 345 (2008), 20-25. (2008) Zbl1178.47023MR2422630DOI10.1016/j.jmaa.2008.03.066
  11. Puhl, J., 10.21136/CMJ.1978.101567, Czech. Math. J. 28 (1978), 656-676. (1978) Zbl0394.46041MR0506439DOI10.21136/CMJ.1978.101567
  12. Rickart, C. E., General Theory of Banach Algebras, The University Series in Higher Mathematics. D. Van Nostrand, Princeton (1960). (1960) Zbl0095.09702MR0115101
  13. Smyth, M. R. F., 10.1007/bf01214779, Math. Z. 145 (1975), 145-155. (1975) Zbl0298.46049MR0394210DOI10.1007/bf01214779
  14. Wang, X., Cao, P., 10.1016/j.jmaa.2018.06.003, J. Math. Anal. Appl. 466 (2018), 567-572. (2018) Zbl06897081MR3818131DOI10.1016/j.jmaa.2018.06.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.