The kh-socle of a commutative semisimple Banach algebra
Mathematica Bohemica (2020)
- Volume: 145, Issue: 4, page 387-399
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topHadder, Youness. "The kh-socle of a commutative semisimple Banach algebra." Mathematica Bohemica 145.4 (2020): 387-399. <http://eudml.org/doc/297276>.
@article{Hadder2020,
abstract = {Let $\mathcal \{A\}$ be a commutative complex semisimple Banach algebra. Denote by $\{\rm kh\}(\{\rm soc\}(\mathcal \{A\}))$ the kernel of the hull of the socle of $\mathcal \{A\}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal \{A\}$. This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.},
author = {Hadder, Youness},
journal = {Mathematica Bohemica},
keywords = {commutative Banach algebra; socle; kh-socle; inessential element},
language = {eng},
number = {4},
pages = {387-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The kh-socle of a commutative semisimple Banach algebra},
url = {http://eudml.org/doc/297276},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Hadder, Youness
TI - The kh-socle of a commutative semisimple Banach algebra
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 387
EP - 399
AB - Let $\mathcal {A}$ be a commutative complex semisimple Banach algebra. Denote by ${\rm kh}({\rm soc}(\mathcal {A}))$ the kernel of the hull of the socle of $\mathcal {A}$. In this work we give some new characterizations of this ideal in terms of minimal idempotents in $\mathcal {A}$. This allows us to show that a “result” from Riesz theory in commutative Banach algebras is not true.
LA - eng
KW - commutative Banach algebra; socle; kh-socle; inessential element
UR - http://eudml.org/doc/297276
ER -
References
top- Aiena, P., 10.1007/1-4020-2525-4, Kluwer Academic Publishers, Dordrecht (2004). (2004) Zbl1077.47001MR2070395DOI10.1007/1-4020-2525-4
- Alexander, J. C., 10.1112/plms/s3-18.1.1, Proc. Lond. Math. Soc., III. Ser. 18 (1968), 1-18. (1968) Zbl0184.16502MR0229040DOI10.1112/plms/s3-18.1.1
- Al-Moajil, A. H., 10.1155/s0161171284000855, Int. J. Math. Math. Sci. 7 (1984), 821-822. (1984) Zbl0599.46072MR0780844DOI10.1155/s0161171284000855
- Androulakis, G., Schlumprecht, T., 10.1112/s0024610701002769, J. Lond. Math. Soc., II. Ser. 64 (2001), 655-674. (2001) Zbl1015.46007MR1843416DOI10.1112/s0024610701002769
- Aupetit, B., 10.1007/978-1-4612-3048-9, Universitext. Springer, New York (1991). (1991) Zbl0715.46023MR1083349DOI10.1007/978-1-4612-3048-9
- Aupetit, B., Mouton, H. du T., 10.4064/sm-109-1-91-100, Studia Math. 109 (1994), 91-100. (1994) Zbl0829.46039MR1267714DOI10.4064/sm-109-1-91-100
- Barnes, B. A., 10.4153/cjm-1968-048-2, Can. J. Math. 20 (1968), 495-504. (1968) Zbl0159.18502MR0232208DOI10.4153/cjm-1968-048-2
- Barnes, B. A., 10.4153/cjm-1969-009-1, Can. J. Math. 21 (1969), 84-95. (1969) Zbl0175.44101MR0237542DOI10.4153/cjm-1969-009-1
- Barnes, B. A., Murphy, G. J., Smyth, M. R. F., West, T. T., Riesz and Fredholm Theory in Banach Algebras, Research Notes in Mathematics 67. Pitman Advanced Publishing Program, Boston (1982). (1982) Zbl0534.46034MR0668516
- Boudi, N., Hadder, Y., 10.1016/j.jmaa.2008.03.066, J. Math. Anal. Appl. 345 (2008), 20-25. (2008) Zbl1178.47023MR2422630DOI10.1016/j.jmaa.2008.03.066
- Puhl, J., 10.21136/CMJ.1978.101567, Czech. Math. J. 28 (1978), 656-676. (1978) Zbl0394.46041MR0506439DOI10.21136/CMJ.1978.101567
- Rickart, C. E., General Theory of Banach Algebras, The University Series in Higher Mathematics. D. Van Nostrand, Princeton (1960). (1960) Zbl0095.09702MR0115101
- Smyth, M. R. F., 10.1007/bf01214779, Math. Z. 145 (1975), 145-155. (1975) Zbl0298.46049MR0394210DOI10.1007/bf01214779
- Wang, X., Cao, P., 10.1016/j.jmaa.2018.06.003, J. Math. Anal. Appl. 466 (2018), 567-572. (2018) Zbl06897081MR3818131DOI10.1016/j.jmaa.2018.06.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.