Finite element-based observer design for nonlinear systems with delayed measurements

Branislav Rehák

Kybernetika (2019)

  • Volume: 55, Issue: 6, page 1050-1069
  • ISSN: 0023-5954

Abstract

top
This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in L 2 -space. Three examples demonstrate viability of this approach and provide a comparison with the solution method based on expansions into Taylor polynomials.

How to cite

top

Rehák, Branislav. "Finite element-based observer design for nonlinear systems with delayed measurements." Kybernetika 55.6 (2019): 1050-1069. <http://eudml.org/doc/297277>.

@article{Rehák2019,
abstract = {This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in $L^2$-space. Three examples demonstrate viability of this approach and provide a comparison with the solution method based on expansions into Taylor polynomials.},
author = {Rehák, Branislav},
journal = {Kybernetika},
keywords = {nonlinear observer; delayed-output system; finite element method},
language = {eng},
number = {6},
pages = {1050-1069},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite element-based observer design for nonlinear systems with delayed measurements},
url = {http://eudml.org/doc/297277},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Rehák, Branislav
TI - Finite element-based observer design for nonlinear systems with delayed measurements
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 1050
EP - 1069
AB - This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in $L^2$-space. Three examples demonstrate viability of this approach and provide a comparison with the solution method based on expansions into Taylor polynomials.
LA - eng
KW - nonlinear observer; delayed-output system; finite element method
UR - http://eudml.org/doc/297277
ER -

References

top
  1. G., Birkhoff,, M., Lane, S., 10.1201/9781315275499, CRC Press, 2017. MR0054551DOI10.1201/9781315275499
  2. A., Borri,, F., Cacace,, De, Gaetano, A., A., Germani,, C., Manes,, P., Palumbo,, S., Panunzi,, P., Pepe,, 10.1109/mcs.2017.2696759, IEEE Control Syst. 37 (2017), 4, 33-49. MR3701062DOI10.1109/mcs.2017.2696759
  3. F., Cacace,, A., Germani,, C., Manes,, 10.1016/j.sysconle.2010.03.005, Systems Control Lett. 59 (2010), 305-312. Zbl1191.93016MR2668922DOI10.1016/j.sysconle.2010.03.005
  4. F., Cacace,, A., Germani,, C., Manes,, 10.1137/120876472, SIAM J. Control Optim. 52 (2014), 1862-1885. MR3213788DOI10.1137/120876472
  5. S., Čelikovský,, B., Rehák,, 10.1016/S1474-6670(17)30544-X, IFAC Proc. Vol. 37 (2004), 21, 651-656. DOI10.1016/S1474-6670(17)30544-X
  6. S., Čelikovský,, A., Torres-Munoz, J., A., Dominguez-Bocanegra,, 10.14736/kyb-2018-1-0155, Kybernetika 54 (2018), 1, 155-174. MR3780961DOI10.14736/kyb-2018-1-0155
  7. M., Farza,, O., Hernández-González,, T., Ménard,, B., Targui,, M., M'Saad,, C.-M., Astorga-Zaragoza,, 10.1016/j.automatica.2017.12.012, Automatica 89 (2018), 125-134. MR3762040DOI10.1016/j.automatica.2017.12.012
  8. A., Germani,, C., Manes,, P., Pepe,, A new approach to state observation of nonlinear systems with delayed output., IEEE Trans. Automat Control 47 /2002), 1, 96-101. MR1879694
  9. N., Kazantzis,, C., Kravaris,, 10.1016/s0167-6911(98)00017-6, Systems Control Lett. 34 (1998), 241-247. MR1639021DOI10.1016/s0167-6911(98)00017-6
  10. N., Kazantzis,, R., Wright,, 10.1016/j.sysconle.2004.12.005, Systems Control Lett. 54 (2005), 877-886. MR2152866DOI10.1016/j.sysconle.2004.12.005
  11. H., Khalil,, Nonlinear Systems., Prentice Hall, New Jersey 2001. Zbl1194.93083
  12. V., Lynnyk,, B., Rehák,, 10.35470/2226-4116-2019-8-4-292-297, Cybernet. Physics 8 (2019), 292-297. DOI10.35470/2226-4116-2019-8-4-292-297
  13. B., Rehák,, 10.1002/asjc.416, Asian J. Control 14 (2011), 1150-1154. MR2955458DOI10.1002/asjc.416
  14. B., Rehák,, 10.14736/kyb-2015-5-0856, Kybernetika 51 (2015), 856-873. MR3445988DOI10.14736/kyb-2015-5-0856
  15. B., Rehák,, 10.1002/asjc.1507, Asian J. Control 19 (2017), 6, 2226-2231. MR3730209DOI10.1002/asjc.1507
  16. B., Rehák,, 10.1016/j.ifacol.2018.07.223, IFAC-PapersOnLine 51 (2018), 14, 201-206. DOI10.1016/j.ifacol.2018.07.223
  17. B., Rehák,, J., Orozco-Mora,, S., Čelikovský,, J., Ruiz-León,, 10.1109/acc.2007.4282643, In: 2007 American Control Conference 2007, pp. 3789-3794. DOI10.1109/acc.2007.4282643
  18. B., Rehák,, S., Čelikovský,, 10.1016/j.automatica.2007.10.015, Automatica 44 (2008), 5, 1358-1365. MR2531803DOI10.1016/j.automatica.2007.10.015
  19. B., Rehák,, S., Čelikovský,, J., Ruiz-León,, J., Orozco-Mora,, A comparison of two {Fem}-based methods for the solution of the nonlinear output regulation problem., Kybernetika 45 (2009), 427-444. MR2543132
  20. H.-G., Roos,, M., Stynes,, L., Tobiska,, 10.1007/978-3-662-03206-0, Springer, Berlin 1996. MR1477665DOI10.1007/978-3-662-03206-0
  21. N., Sakamoto,, B., Rehák,, 10.1109/cdc.2011.6161089, In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando 2011. DOI10.1109/cdc.2011.6161089
  22. N., Sakamoto,, B., Rehák,, K., Ueno,, 10.3182/20140824-6-za-1003.01103, In: Proc. 19th IFAC World Congress, 2014, Cape Town 2014. DOI10.3182/20140824-6-za-1003.01103
  23. T., Tran, A., S., Suzuki,, N., Sakamoto,, 10.1109/lcsys.2017.2717932, IEEE Control Systems Lett. 1 (2017), 2, 418-423. DOI10.1109/lcsys.2017.2717932
  24. Y., Yu,, Y., Shen,, 10.14736/kyb-2018-4-0699, Kybernetika 54 (2018), 4, 699-717. MR3863251DOI10.14736/kyb-2018-4-0699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.