Adaptive high gain observer extension and its application to bioprocess monitoring

Sergej Čelikovský; Jorge Antonio Torres-Muñoz; Alma Rosa Dominguez-Bocanegra

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 155-174
  • ISSN: 0023-5954

Abstract

top
The adaptive version of the high gain observer for the strictly triangular systems subjected to constant unknown disturbances is proposed here. The adaptive feature is necessary due to the fact that the unknown disturbance enters in a way that cannot be suppressed by the high gain technique. The developed observers are then applied to a culture of microorganism in a bioreactor, namely, to the model of the continuous culture of Spirulina maxima. It is a common practice that just the biomass (or substrate) concentration is directly measured as the output of the process for monitoring and control purposes. This paper thereby shows both by theoretical analysis and numerical simulation that the adaptive high-gain observers offer a realistic option of online software sensors for substrate estimation.

How to cite

top

Čelikovský, Sergej, Torres-Muñoz, Jorge Antonio, and Dominguez-Bocanegra, Alma Rosa. "Adaptive high gain observer extension and its application to bioprocess monitoring." Kybernetika 54.1 (2018): 155-174. <http://eudml.org/doc/294710>.

@article{Čelikovský2018,
abstract = {The adaptive version of the high gain observer for the strictly triangular systems subjected to constant unknown disturbances is proposed here. The adaptive feature is necessary due to the fact that the unknown disturbance enters in a way that cannot be suppressed by the high gain technique. The developed observers are then applied to a culture of microorganism in a bioreactor, namely, to the model of the continuous culture of Spirulina maxima. It is a common practice that just the biomass (or substrate) concentration is directly measured as the output of the process for monitoring and control purposes. This paper thereby shows both by theoretical analysis and numerical simulation that the adaptive high-gain observers offer a realistic option of online software sensors for substrate estimation.},
author = {Čelikovský, Sergej, Torres-Muñoz, Jorge Antonio, Dominguez-Bocanegra, Alma Rosa},
journal = {Kybernetika},
keywords = {adaptive observers; nonlinear systems; bioprocess},
language = {eng},
number = {1},
pages = {155-174},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive high gain observer extension and its application to bioprocess monitoring},
url = {http://eudml.org/doc/294710},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Čelikovský, Sergej
AU - Torres-Muñoz, Jorge Antonio
AU - Dominguez-Bocanegra, Alma Rosa
TI - Adaptive high gain observer extension and its application to bioprocess monitoring
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 155
EP - 174
AB - The adaptive version of the high gain observer for the strictly triangular systems subjected to constant unknown disturbances is proposed here. The adaptive feature is necessary due to the fact that the unknown disturbance enters in a way that cannot be suppressed by the high gain technique. The developed observers are then applied to a culture of microorganism in a bioreactor, namely, to the model of the continuous culture of Spirulina maxima. It is a common practice that just the biomass (or substrate) concentration is directly measured as the output of the process for monitoring and control purposes. This paper thereby shows both by theoretical analysis and numerical simulation that the adaptive high-gain observers offer a realistic option of online software sensors for substrate estimation.
LA - eng
KW - adaptive observers; nonlinear systems; bioprocess
UR - http://eudml.org/doc/294710
ER -

References

top
  1. Abbaszadeh, M., Marquez, H. J., 10.1016/j.automatica.2012.02.033, Automatica 48 (2012), 5, 894-900. DOI10.1016/j.automatica.2012.02.033
  2. Agrawal, P., Lim, H., 10.1007/bfb0006380, Advances in Biochemical Engineering/ Biotechnology 30 (1984), 61-90. DOI10.1007/bfb0006380
  3. Bastin, G., Gevers, M., 10.1109/9.1273, IEEE Trans. Automat. Control 33 (1988), 7, 650-658. DOI10.1109/9.1273
  4. Bejarano, F., Fridman, L., 10.1080/00207179.2010.501386, Int. J. Control 83 (2010), 1920-1929. MR2724205DOI10.1080/00207179.2010.501386
  5. Besancon, G., Leon-Morales, J. de, Huerta-Guevara, O., 10.1080/00207170600552766, Int. J. Control 79 (2006), 6, 581-591. MR2216743DOI10.1080/00207170600552766
  6. al., A. R. Bocanegra-Domínguez et, Estudio teórico práctico de la remoción de contaminantes presentes en el río de Los Remedios, Estado de México., Tecnología y Ciencias del Agua 24.2 (2009), 81-91. (In Spanish) 
  7. Bornard, G., Celle-Couenne, F., Gilles, G., 10.1007/978-1-4615-2047-4_6, Chapman and Hall, London 1995, pp. 173-216. MR1359309DOI10.1007/978-1-4615-2047-4_6
  8. Canizares, R. O., Domínguez, A. R., 10.1016/0960-8524(93)90148-5, Bioresource Technol. 45 (1993), 1, 73-75. DOI10.1016/0960-8524(93)90148-5
  9. Diop, S., Fliess, M., 10.1109/cdc.1991.261405, In: Proc. 30th IEEE Conference on Decision and Control 1 (1991), pp. 714-719. DOI10.1109/cdc.1991.261405
  10. Efimov, D., Fridman, L., 10.1016/j.automatica.2010.12.003, Automatica 47 (2011), 3, 565-570. DOI10.1016/j.automatica.2010.12.003
  11. Farza, M., Bouraou, I., Menard, T., Abdennou, R., M'Saad, M., 10.1016/j.automatica.2014.10.032, Automatica 50 (2014), 2951-2960. MR3276636DOI10.1016/j.automatica.2014.10.032
  12. Farza, M., M'saad, M., Maatou, T., Kamoun, M., 10.1016/j.automatica.2009.06.008, Automatica 45 (2009), 2292-2299. MR2890790DOI10.1016/j.automatica.2009.06.008
  13. Fridman, L., Shtessel, Y., Edwards, C., Yan, X., 10.1002/rnc.1198, Int. J. Robust Nonlinear Control 18 (2008), 399-412. MR2392130DOI10.1002/rnc.1198
  14. Gauthier, J. P., Hammouri, H., Othman, S., 10.1109/9.256352, IEEE Trans. Automat. Control 37 (1991), 875-880. Zbl0775.93020DOI10.1109/9.256352
  15. Gerd, L., Narendra, K., 10.1109/tac.1973.1100369, IEEE Trans. Automat. Control 18 (1973), 5, 496-499. DOI10.1109/tac.1973.1100369
  16. Guoping, L., Ho, D, 10.1109/tcsii.2006.875332, IEEE Trans. Circuits Systems II: Express Briefs 53 (2006), 7, 563-567. DOI10.1109/tcsii.2006.875332
  17. Hammouri, H., Nadri, M., 10.1016/j.sysconle.2012.11.001, Systems Control Lett. 62 (2013), 3, 256-261. MR3015290DOI10.1016/j.sysconle.2012.11.001
  18. Hermann, R., Krener, A., 10.1109/tac.1977.1101601, IEEE Trans. Automat. Control 22 (1977), 5, 728-740. DOI10.1109/tac.1977.1101601
  19. Hamid-Reza, K., Zapateiro, M., Luo, N., 10.1016/j.jfranklin.2010.03.004, J. Franklin Inst. 347 (2010), 6, 957-973. DOI10.1016/j.jfranklin.2010.03.004
  20. Karimi, H. R., Zapateiro, M., N., Luo, 10.1016/j.jfranklin.2010.03.004, J. Franklin Inst. 347 (2010), 6, 957-973. MR2653874DOI10.1016/j.jfranklin.2010.03.004
  21. Khalil, H., Nonlinear Systems. Third edition., Prentice Hall, Englewood Cliffs, NJ 2002. 
  22. Khosrowjerdi, M. J., 10.1049/iet-cta.2009.0556, IET Control Theory A. 5 (2011), 2, 299-307. DOI10.1049/iet-cta.2009.0556
  23. Kreisselmeier, G., 10.1109/tac.1977.1101401, IEEE Trans. Automat. Control 22 (1977), 1, 2-8. MR0444142DOI10.1109/tac.1977.1101401
  24. Lafon, F., Busvelle, E., Gauthier, J. P., 10.1016/j.jprocont.2011.03.006, Journal Process Control 21 (2011), 893-900. DOI10.1016/j.jprocont.2011.03.006
  25. Liang, X., Jiangfeng, Z., Xiaohua, X., 10.1109/tac.2008.928318, IEEE Trans. Automat. Control 53 (2008), 7, 1740-1746. MR2446392DOI10.1109/tac.2008.928318
  26. al., F. Mairet et, 10.1016/j.biortech.2010.06.138, Bioresource Technol. 102.1 (2011), 142-149. DOI10.1016/j.biortech.2010.06.138
  27. Marino, R., Tomei, P., Nonlinear Control Design. Geometric, Adaptive and Robust Approach., Prentice Hall, Englewood Cliffs, NJ 1995. 
  28. Marino, R., Tomei, P., 10.1109/9.400471, IEEE Trans. Automat. Control 40 (1995), 7, 1300-1304. MR1344052DOI10.1109/9.400471
  29. Raghavan, S., Hedrick, J., 10.1080/00207179408923090, Int. J. Control 59 (1994), 2, 515-528. Zbl0802.93007MR1261285DOI10.1080/00207179408923090
  30. Rajamani, R., 10.1109/9.661604, IEEE Trans. Automat. Control 43 (1998), 3, 397-401. Zbl0905.93009DOI10.1109/9.661604
  31. Rodríguez-Mata, A., Torres-Muñoz, J., Domínguez, A. R., Hernandez-Villagran, D., Čelikovský, S., 10.1109/iceee.2011.6106611, In: Proc. 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Cancun 2011, pp. 444-449. DOI10.1109/iceee.2011.6106611
  32. Sanchez-Torres, J., Loukianov, G., Moreno, J., Drakunov, S. V., An equivalent control based sliding mode observer using high order uniform robust sliding operators., In: Proc. American Control Conference, Montreal 2012, pp. 6160-6165. 
  33. Travieso, L., Sánchez, E., Bora, R., 10.1080/09593330.2004.9619347, Enviromental Technol. 25 (2004), 565-576. DOI10.1080/09593330.2004.9619347
  34. Wu, H., 10.1049/iet-cta.2012.0318, IET Control Theory Appl. 7 (2013), 218-222. DOI10.1049/iet-cta.2012.0318
  35. Yong-Hong, L., Zhou, Y., 10.1016/j.sysconle.2013.09.007, Systems Control Lett. 62 (2013), 12, 1143-1150. DOI10.1016/j.sysconle.2013.09.007
  36. Zhang, Q., 10.1109/9.989154, IEEE Trans. Automat. Control 47 (2002), 3, 525-529. DOI10.1109/9.989154
  37. Zemouche, A., Boutayeb, M., Maatoug, T., Kamoun, M., 10.1016/j.automatica.2012.11.029, Automatica 49 (2013), 585-591. MR3004728DOI10.1016/j.automatica.2012.11.029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.