Robust sampled-data observer design for Lipschitz nonlinear systems
Kybernetika (2018)
- Volume: 54, Issue: 4, page 699-717
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topYu, Yu, and Shen, Yanjun. "Robust sampled-data observer design for Lipschitz nonlinear systems." Kybernetika 54.4 (2018): 699-717. <http://eudml.org/doc/294872>.
@article{Yu2018,
abstract = {In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.},
author = {Yu, Yu, Shen, Yanjun},
journal = {Kybernetika},
keywords = {sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs},
language = {eng},
number = {4},
pages = {699-717},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust sampled-data observer design for Lipschitz nonlinear systems},
url = {http://eudml.org/doc/294872},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Yu, Yu
AU - Shen, Yanjun
TI - Robust sampled-data observer design for Lipschitz nonlinear systems
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 699
EP - 717
AB - In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.
LA - eng
KW - sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs
UR - http://eudml.org/doc/294872
ER -
References
top- Ahrens, J., Tan, X., Khalil, H., 10.1109/tac.2009.2031204, IEEE Trans. Automat. Control 54 (2009), 2518-2529. MR2571917DOI10.1109/tac.2009.2031204
- Boutat, D., 10.1002/rnc.3102, Int. J. Robust Nonlinear Control 25 (2015), 461-474. MR3304211DOI10.1002/rnc.3102
- Boyd, S., Ghaoui, L., al., E. Feron et, 10.1137/1.9781611970777, Society for Industrial and Applied Mathematics, ch. 1.2, Philadelphia 1994. MR1284712DOI10.1137/1.9781611970777
- Chen, M., Chen, C., 10.1109/tac.2007.910724, IEEE Trans. Automat. Control 52 (2007), 2365-2369. MR2374276DOI10.1109/tac.2007.910724
- Dezuo, T., Trofino, A., 10.1109/acc.2014.6858805, In: 2014 American Control Conference. 47 (2014), 5343-5348. DOI10.1109/acc.2014.6858805
- Dinh, T., Andrieu, V., Nadri, M., al., et, 10.1109/tac.2014.2329211, IEEE Trans. Automat. Control 60 (2015), 787-792. MR3318404DOI10.1109/tac.2014.2329211
- Dong, Y., Liu, J., Mei, S., Observer design for a class of nonlinear discrete-time systems with time-delay., Kybernetika 49 (2013), 341-358. Zbl1264.93144MR3085400
- Doyle, J., Stein, G., 10.1109/tac.1979.1102095, IEEE Trans. Automatic Control 24 (1979), 607-611. MR0538818DOI10.1109/tac.1979.1102095
- Ekramian, M., Sheikholeslam, F., al., S. Hosseinnia et, 10.1016/j.sysconle.2013.01.002, Systems Control Lett. 62 (2013), 319-323. MR3031101DOI10.1016/j.sysconle.2013.01.002
- Gupta, M., Tomar, N., Bhaumik, S., Observer Design for Descriptor Systems with Lipschitz Nonlinearities: An LMI Approach., Nonlinear Dynamics Systems Theory 14 (2014), 291-301. MR3560210
- Kang, W., Krener, A., al., M. Xiao et, 10.1007/978-3-642-35088-7_1, In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer Berlin Heidelberg 2013, pp. 1-25. DOI10.1007/978-3-642-35088-7_1
- Khalil, H., Nonlinear System., Upper Saddle River, Prentice Hall, ch. 14.5, NJ 2000.
- Kwakernaak, H., Sivan, R., Linear Optimal Control Systems., Wiley, ch. 3, Theorem 3.14, New York 1972. MR0406607
- Lewis, F., Applied Optimal Control and Estimation., Englewood Cliffs, Prentice-Hall, ch. 3, Theorem 2, NJ 1992.
- Marino, R., Tomei, P., 10.1016/s0005-1098(97)82237-6, Automatica 33 (2009), 1769-1770. DOI10.1016/s0005-1098(97)82237-6
- Nešić, D., Teel, A., 10.1109/tac.2004.831175, IEEE Trans. Automat. Control 49 (2004), 1103-1122. MR2071938DOI10.1109/tac.2004.831175
- Oucief, N., Tadjine, M., Labiod, S., 10.1515/acsc-2016-0014, Archives Control Sci. 26 (2016), 245-259. MR3530358DOI10.1515/acsc-2016-0014
- Pan, J., Meng, M., Feng, J., 10.1109/chicc.2015.7259771, In: Control Conference IEEE (2015), pp. 1003-1007. DOI10.1109/chicc.2015.7259771
- Perez, C., Mera, M., 10.14736/kyb-2015-1-0059, Kybernetika 54 (2015), 59-80. MR3333833DOI10.14736/kyb-2015-1-0059
- Rehák, B., 10.14736/kyb-2015-5-0856, Kybernetika 51 (2015), 856-873. MR3445988DOI10.14736/kyb-2015-5-0856
- Saberi, A., Sannuti, P., Chen, B., Optimal Control., Englewood Cliffs, Prentice-Hall, ch. 4, Theorem 4.1.2, NJ 1995.
- Shen, Y., Zhang, D., Xia, X., 10.1002/rnc.3491, Internat. J. Robust and Nonlinear Control 26 (2016), 3075-3087. Zbl1346.93320MR3537171DOI10.1002/rnc.3491
- Shen, Y., Zhang, D., Xia, X., 10.1016/j.automatica.2016.09.028, Automatica 75 (2017), 127-132. MR3582161DOI10.1016/j.automatica.2016.09.028
- Stein, G., Athans, M., 10.1109/tac.1987.1104550, IEEE Trans. Automat. Control 32 (1987), 105-114. DOI10.1109/tac.1987.1104550
- Tahir, A., Magri, A., Ahmed-Ali, T., al., et, 10.1016/j.ifacol.2015.09.206, IFAC-Papers OnLine 48 (2015), 327-332. DOI10.1016/j.ifacol.2015.09.206
- Thau, F., 10.1080/00207177308932395, Int. J. Control 17 (1973), 471-479. DOI10.1080/00207177308932395
- Wang, Y., Liu, X., Xiao, J., Shen, Y., 10.1016/j.automatica.2018.03.020, Automatica 93 (2018), 26-32. MR3810889DOI10.1016/j.automatica.2018.03.020
- Yu, L., Robust Control: Linear Matrix Inequality Approach., Tsinghua University Press 2002.
- Zemouche, A., Boutayeb, M., 10.1016/j.automatica.2012.11.029, Automatica 49 (2013), 585-591. MR3004728DOI10.1016/j.automatica.2012.11.029
- Zhang, D., Shen, Y. J., 10.1109/tac.2016.2638043, IEEE Trans. Automat. Control 62 (2017), 5822-5829. MR3730959DOI10.1109/tac.2016.2638043
- Zhang, D., Shen, Y., Xia, X., 10.14736/kyb-2016-3-0441, Kybernetika 52 (2016), 441-460. MR3532516DOI10.14736/kyb-2016-3-0441
- Zhang, W., Su, H., al., S. Su et, Nonlinear observer design for one-sided Lipschitz systems., Neurocomputing (2014), 505-511.
- Zhang, W., Su, H., al., F. Zhu et, 10.1109/tcsii.2011.2174671, IEEE Trans. Circuits Systems II Express Briefs 29 (2012), 123-127. DOI10.1109/tcsii.2011.2174671
- Zhou, Y., Soh, Y., Shen, J., 10.1002/rnc.2982, Int. J. Robust abd Nonlinear Control 24 (2016), 2136-2151. MR3259380DOI10.1002/rnc.2982
Citations in EuDML Documents
top- Yanjun Shen, Lei Lin, Adaptive output feedback stabilization for nonlinear systems with unknown polynomial-of-output growth rate and sensor uncertainty
- Derui Ding, Qing-Long Han, Xiaohua Ge, Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey
- Branislav Rehák, Finite element-based observer design for nonlinear systems with delayed measurements
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.