Robust sampled-data observer design for Lipschitz nonlinear systems

Yu Yu; Yanjun Shen

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 699-717
  • ISSN: 0023-5954

Abstract

top
In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.

How to cite

top

Yu, Yu, and Shen, Yanjun. "Robust sampled-data observer design for Lipschitz nonlinear systems." Kybernetika 54.4 (2018): 699-717. <http://eudml.org/doc/294872>.

@article{Yu2018,
abstract = {In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.},
author = {Yu, Yu, Shen, Yanjun},
journal = {Kybernetika},
keywords = {sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs},
language = {eng},
number = {4},
pages = {699-717},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust sampled-data observer design for Lipschitz nonlinear systems},
url = {http://eudml.org/doc/294872},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Yu, Yu
AU - Shen, Yanjun
TI - Robust sampled-data observer design for Lipschitz nonlinear systems
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 699
EP - 717
AB - In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.
LA - eng
KW - sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs
UR - http://eudml.org/doc/294872
ER -

References

top
  1. Ahrens, J., Tan, X., Khalil, H., 10.1109/tac.2009.2031204, IEEE Trans. Automat. Control 54 (2009), 2518-2529. MR2571917DOI10.1109/tac.2009.2031204
  2. Boutat, D., 10.1002/rnc.3102, Int. J. Robust Nonlinear Control 25 (2015), 461-474. MR3304211DOI10.1002/rnc.3102
  3. Boyd, S., Ghaoui, L., al., E. Feron et, 10.1137/1.9781611970777, Society for Industrial and Applied Mathematics, ch. 1.2, Philadelphia 1994. MR1284712DOI10.1137/1.9781611970777
  4. Chen, M., Chen, C., 10.1109/tac.2007.910724, IEEE Trans. Automat. Control 52 (2007), 2365-2369. MR2374276DOI10.1109/tac.2007.910724
  5. Dezuo, T., Trofino, A., 10.1109/acc.2014.6858805, In: 2014 American Control Conference. 47 (2014), 5343-5348. DOI10.1109/acc.2014.6858805
  6. Dinh, T., Andrieu, V., Nadri, M., al., et, 10.1109/tac.2014.2329211, IEEE Trans. Automat. Control 60 (2015), 787-792. MR3318404DOI10.1109/tac.2014.2329211
  7. Dong, Y., Liu, J., Mei, S., Observer design for a class of nonlinear discrete-time systems with time-delay., Kybernetika 49 (2013), 341-358. Zbl1264.93144MR3085400
  8. Doyle, J., Stein, G., 10.1109/tac.1979.1102095, IEEE Trans. Automatic Control 24 (1979), 607-611. MR0538818DOI10.1109/tac.1979.1102095
  9. Ekramian, M., Sheikholeslam, F., al., S. Hosseinnia et, 10.1016/j.sysconle.2013.01.002, Systems Control Lett. 62 (2013), 319-323. MR3031101DOI10.1016/j.sysconle.2013.01.002
  10. Gupta, M., Tomar, N., Bhaumik, S., Observer Design for Descriptor Systems with Lipschitz Nonlinearities: An LMI Approach., Nonlinear Dynamics Systems Theory 14 (2014), 291-301. MR3560210
  11. Kang, W., Krener, A., al., M. Xiao et, 10.1007/978-3-642-35088-7_1, In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer Berlin Heidelberg 2013, pp. 1-25. DOI10.1007/978-3-642-35088-7_1
  12. Khalil, H., Nonlinear System., Upper Saddle River, Prentice Hall, ch. 14.5, NJ 2000. 
  13. Kwakernaak, H., Sivan, R., Linear Optimal Control Systems., Wiley, ch. 3, Theorem 3.14, New York 1972. MR0406607
  14. Lewis, F., Applied Optimal Control and Estimation., Englewood Cliffs, Prentice-Hall, ch. 3, Theorem 2, NJ 1992. 
  15. Marino, R., Tomei, P., 10.1016/s0005-1098(97)82237-6, Automatica 33 (2009), 1769-1770. DOI10.1016/s0005-1098(97)82237-6
  16. Nešić, D., Teel, A., 10.1109/tac.2004.831175, IEEE Trans. Automat. Control 49 (2004), 1103-1122. MR2071938DOI10.1109/tac.2004.831175
  17. Oucief, N., Tadjine, M., Labiod, S., 10.1515/acsc-2016-0014, Archives Control Sci. 26 (2016), 245-259. MR3530358DOI10.1515/acsc-2016-0014
  18. Pan, J., Meng, M., Feng, J., 10.1109/chicc.2015.7259771, In: Control Conference IEEE (2015), pp. 1003-1007. DOI10.1109/chicc.2015.7259771
  19. Perez, C., Mera, M., 10.14736/kyb-2015-1-0059, Kybernetika 54 (2015), 59-80. MR3333833DOI10.14736/kyb-2015-1-0059
  20. Rehák, B., 10.14736/kyb-2015-5-0856, Kybernetika 51 (2015), 856-873. MR3445988DOI10.14736/kyb-2015-5-0856
  21. Saberi, A., Sannuti, P., Chen, B., H 2 Optimal Control., Englewood Cliffs, Prentice-Hall, ch. 4, Theorem 4.1.2, NJ 1995. 
  22. Shen, Y., Zhang, D., Xia, X., 10.1002/rnc.3491, Internat. J. Robust and Nonlinear Control 26 (2016), 3075-3087. Zbl1346.93320MR3537171DOI10.1002/rnc.3491
  23. Shen, Y., Zhang, D., Xia, X., 10.1016/j.automatica.2016.09.028, Automatica 75 (2017), 127-132. MR3582161DOI10.1016/j.automatica.2016.09.028
  24. Stein, G., Athans, M., 10.1109/tac.1987.1104550, IEEE Trans. Automat. Control 32 (1987), 105-114. DOI10.1109/tac.1987.1104550
  25. Tahir, A., Magri, A., Ahmed-Ali, T., al., et, 10.1016/j.ifacol.2015.09.206, IFAC-Papers OnLine 48 (2015), 327-332. DOI10.1016/j.ifacol.2015.09.206
  26. Thau, F., 10.1080/00207177308932395, Int. J. Control 17 (1973), 471-479. DOI10.1080/00207177308932395
  27. Wang, Y., Liu, X., Xiao, J., Shen, Y., 10.1016/j.automatica.2018.03.020, Automatica 93 (2018), 26-32. MR3810889DOI10.1016/j.automatica.2018.03.020
  28. Yu, L., Robust Control: Linear Matrix Inequality Approach., Tsinghua University Press 2002. 
  29. Zemouche, A., Boutayeb, M., 10.1016/j.automatica.2012.11.029, Automatica 49 (2013), 585-591. MR3004728DOI10.1016/j.automatica.2012.11.029
  30. Zhang, D., Shen, Y. J., 10.1109/tac.2016.2638043, IEEE Trans. Automat. Control 62 (2017), 5822-5829. MR3730959DOI10.1109/tac.2016.2638043
  31. Zhang, D., Shen, Y., Xia, X., 10.14736/kyb-2016-3-0441, Kybernetika 52 (2016), 441-460. MR3532516DOI10.14736/kyb-2016-3-0441
  32. Zhang, W., Su, H., al., S. Su et, Nonlinear H observer design for one-sided Lipschitz systems., Neurocomputing (2014), 505-511. 
  33. Zhang, W., Su, H., al., F. Zhu et, 10.1109/tcsii.2011.2174671, IEEE Trans. Circuits Systems II Express Briefs 29 (2012), 123-127. DOI10.1109/tcsii.2011.2174671
  34. Zhou, Y., Soh, Y., Shen, J., 10.1002/rnc.2982, Int. J. Robust abd Nonlinear Control 24 (2016), 2136-2151. MR3259380DOI10.1002/rnc.2982

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.