Homogeneous Einstein manifolds based on symplectic triple systems

Cristina Draper Fontanals

Communications in Mathematics (2020)

  • Volume: 28, Issue: 2, page 139-154
  • ISSN: 1804-1388

Abstract

top
For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.

How to cite

top

Fontanals, Cristina Draper. "Homogeneous Einstein manifolds based on symplectic triple systems." Communications in Mathematics 28.2 (2020): 139-154. <http://eudml.org/doc/297280>.

@article{Fontanals2020,
abstract = {For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.},
author = {Fontanals, Cristina Draper},
journal = {Communications in Mathematics},
language = {eng},
number = {2},
pages = {139-154},
publisher = {University of Ostrava},
title = {Homogeneous Einstein manifolds based on symplectic triple systems},
url = {http://eudml.org/doc/297280},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Fontanals, Cristina Draper
TI - Homogeneous Einstein manifolds based on symplectic triple systems
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 139
EP - 154
AB - For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
LA - eng
UR - http://eudml.org/doc/297280
ER -

References

top
  1. Alekseevski, D.V., Homogeneous Einstein metrics, Differential Geometry and its Applications (Proccedings of the Conference), 1987, 1-21, Univ. J. E. Purkyně, Brno, (1987) MR0923361
  2. Alekseevsky, D.V., Cortés, V., The twistor spaces of a para-quaternionic K{ä}hler manifold, Osaka Journal of Mathematics, 45, 1, 2008, 215-251, Osaka University and Osaka City University, Departments of Mathematics, (2008) MR2416658
  3. Arvanitoyeorgos, A., Chrysikos, I., 10.1017/S1446788711001303, Journal of the Australian Mathematical Society, 90, 2, 2011, 237-251, Cambridge University Press, (2011) MR2821781DOI10.1017/S1446788711001303
  4. Arvanitoyeorgos, A., Mori, K., Sakane, Y., 10.1007/s10711-011-9681-1, Geometriae Dedicata, 160, 1, 2012, 261-285, Springer, (2012) MR2970054DOI10.1007/s10711-011-9681-1
  5. Arvanitoyeorgos, A., Sakane, Y., Statha, M., New homogeneous Einstein metrics on quaternionic Stiefel manifolds, Advances in Geometry, 18, 4, 2018, 509-524, De Gruyter, (2018) MR3871412
  6. Benito, P., Draper, C., Elduque, A., 10.1016/j.jpaa.2005.01.003, Journal of Pure and Applied Algebra, 202, 1-3, 2005, 22-54, Elsevier, (2005) MR2163399DOI10.1016/j.jpaa.2005.01.003
  7. Benito, P., Elduque, A., Martín-Herce, F., Nonassociative systems and irreducible homogeneous spaces, Recent Advances in Geometry and Topology, 2004, 65-76, Cluj Univ. Press, Cluj-Napoca, (2004) MR2113571
  8. Bertram, W., The geometry of Jordan and Lie structures, 1754, 2000, Springer-Verlag, Berlin, Lecture Notes in Mathematics 1754. (2000) MR1809879
  9. Besse, A.L., Einstein manifolds, 2008, Classics in Mathematics. Springer-Verlag, Berlin, Reprint of the 1987 edition. (2008) MR2371700
  10. Böhm, C., Kerr, M.M., Low-dimensional homogeneous Einstein manifolds, Transactions of the American Mathematical Society, 4, 2006, 1455-1468, JSTOR, (2006) MR2186982
  11. Boyer, C., Galicki, K., Sasakian geometry, 2008, Oxford Univ. Press, (2008) MR2382957
  12. Dancer, A.S., Jørgensen, H.R., Swann, A.F., Metric geometries over the split quaternions, Rendiconti del Seminario Matematico, Universit¸ e Politecnico di Torino, 63, 2, 2005, 119-139, (2005) MR2143244
  13. C. Draper, Holonomy and 3-Sasakian homogeneous manifolds versus symplectic triple systems, Transformation Groups, 2019, arXiv:1903.07815. (2019) 
  14. C. Draper, A. Elduque, Classification of simple real symplectic triple systems, preprint. 
  15. C. Draper, M. Ortega, F.J. Palomo, 10.1007/s00209-019-02304-x, Mathematische Zeitschrift, 294, 2020, 817-868, (2020) MR4054456DOI10.1007/s00209-019-02304-x
  16. Elduque, A., 10.1016/j.jalgebra.2005.06.014, Journal of Algebra, 296, 1, 2006, 196-233, Elsevier, (2006) MR2192604DOI10.1016/j.jalgebra.2005.06.014
  17. Elduque, A., The Magic Square and Symmetric Compositions II, Revista Matemática Iberoamericana, 23, 1, 2007, 57-84, Departamento de Matemáticas, Universidad Aut{ó}noma de Madrid, (2007) MR2351126
  18. Heber, J., 10.1007/s002220050247, Inventiones mathematicae, 133, 2, 1998, 279-352, Springer, (1998) MR1632782DOI10.1007/s002220050247
  19. Kashiwada, T., A note on a Riemannian space with Sasakian 3-structure, Natural Science Report, Ochanomizu University, 22, 1, 1971, 1-2, (1971) MR0303449
  20. Kerner, R., Ternary and non-associative structures, International Journal of Geometric Methods in Modern Physics, 5, 8, 2008, 1265-1294, World Scientific, (2008) MR2484553
  21. Meyberg, K.E., 10.1016/S1385-7258(68)50018-0, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Series A = Indagationes Mathematicae, 30, 1968, 162-190, (1968) MR0225838DOI10.1016/S1385-7258(68)50018-0
  22. Tamaru, H., 10.1007/s00208-010-0589-0, Mathematische Annalen, 351, 1, 2011, 51-66, Springer, (2011) MR2824845DOI10.1007/s00208-010-0589-0
  23. Tamaru, H., 10.1007/s00209-007-0217-1, Mathematische Zeitschrift, 259, 1, 2008, 171-186, Springer, (2008) MR2377747DOI10.1007/s00209-007-0217-1
  24. M.Y. Wang, W. Ziller, 10.24033/asens.1497, Annales Scientifiques de l'Ecole Normale Sup{é}rieure, 18, 4, 1985, 563-633, (1985) Zbl0598.53049MR0839687DOI10.24033/asens.1497
  25. M.Y. Wang, W. Ziller, 10.1007/BF01388738, Inventiones Mathematicae, 84, 1, 1986, 177-194, Springer-Verlag, (1986) MR0830044DOI10.1007/BF01388738
  26. Wolf, J.A., The geometry and structure of isotropy irreducible homogeneous spaces, Acta Mathematica, 120, 1968, 59-148, Institut Mittag-Leffler, (1968) MR0223501
  27. Yamaguti, K., Asano, H., 10.3792/pja/1195518629, Proceedings of the Japan Academy, 51, 4, 1975, 253-258, The Japan Academy, (1975) MR0374212DOI10.3792/pja/1195518629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.