Inequalities for the arithmetical functions of Euler and Dedekind
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 781-791
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAlzer, Horst, and Kwong, Man Kam. "Inequalities for the arithmetical functions of Euler and Dedekind." Czechoslovak Mathematical Journal 70.3 (2020): 781-791. <http://eudml.org/doc/297346>.
@article{Alzer2020,
abstract = {For positive integers $n$, Euler’s phi function and Dedekind’s psi function are given by \[ \phi (n)= n \prod \_\{\begin\{array\}\{c\} p\mid n \\ p \ \{\rm prime\}\end\{array\}\} \Bigl (1-\frac\{1\}\{p\}\Bigr ) \quad \mbox\{and\} \quad \psi (n)=n\prod \_\{\begin\{array\}\{c\} p\mid n \\ p \ \{\rm prime\}\end\{array\}\} \Bigl (1+\frac\{1\}\{p\}\Bigr ), \]
respectively. We prove that for all $n\ge 2$ we have \[ \Bigl (1-\frac\{1\}\{n\}\Bigr )^\{n-1\}\Bigl (1+\frac\{1\}\{n\}\Bigr )^\{n+1\} \le \Bigl (\frac\{\phi (n)\}\{n\} \Bigr )^\{\phi (n)\} \Bigl ( \frac\{\psi (n)\}\{n\}\Bigr )^\{\psi (n)\} \]
and \[ \Bigl (\frac\{\phi (n)\}\{n\} \Bigr )^\{\psi (n)\} \Bigl ( \frac\{\psi (n)\}\{n\}\Bigr )^\{\phi (n)\} \le \Bigl (1-\frac\{1\}\{n\}\Bigr )^\{n+1\}\Bigl (1+\frac\{1\}\{n\}\Bigr )^\{n-1\}. \]
The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).},
author = {Alzer, Horst, Kwong, Man Kam},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler's phi function; Dedekind's psi function; inequalities},
language = {eng},
number = {3},
pages = {781-791},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for the arithmetical functions of Euler and Dedekind},
url = {http://eudml.org/doc/297346},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Alzer, Horst
AU - Kwong, Man Kam
TI - Inequalities for the arithmetical functions of Euler and Dedekind
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 781
EP - 791
AB - For positive integers $n$, Euler’s phi function and Dedekind’s psi function are given by \[ \phi (n)= n \prod _{\begin{array}{c} p\mid n \\ p \ {\rm prime}\end{array}} \Bigl (1-\frac{1}{p}\Bigr ) \quad \mbox{and} \quad \psi (n)=n\prod _{\begin{array}{c} p\mid n \\ p \ {\rm prime}\end{array}} \Bigl (1+\frac{1}{p}\Bigr ), \]
respectively. We prove that for all $n\ge 2$ we have \[ \Bigl (1-\frac{1}{n}\Bigr )^{n-1}\Bigl (1+\frac{1}{n}\Bigr )^{n+1} \le \Bigl (\frac{\phi (n)}{n} \Bigr )^{\phi (n)} \Bigl ( \frac{\psi (n)}{n}\Bigr )^{\psi (n)} \]
and \[ \Bigl (\frac{\phi (n)}{n} \Bigr )^{\psi (n)} \Bigl ( \frac{\psi (n)}{n}\Bigr )^{\phi (n)} \le \Bigl (1-\frac{1}{n}\Bigr )^{n+1}\Bigl (1+\frac{1}{n}\Bigr )^{n-1}. \]
The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).
LA - eng
KW - Euler's phi function; Dedekind's psi function; inequalities
UR - http://eudml.org/doc/297346
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics, Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Atanassov, K. T., Note on , and -functions III, Notes Number Theory Discrete Math. 17 (2011), 13-14. (2011) Zbl1259.11009MR1418823
- Kannan, V., Srikanth, R., Note on and functions, Notes Number Theory Discrete Math. 19 (2013), 19-21. (2013) Zbl1329.11006
- Mitrinović, D. S., Sándor, J., Crstici, B., 10.1007/1-4020-3658-2, Mathematics and Its Applications 351, Kluwer, Dordrecht (1996). (1996) Zbl0862.11001MR1374329DOI10.1007/1-4020-3658-2
- Sándor, J., On certain inequalities for , , and related functions, Notes Number Theory Discrete Math. 20 (2014), 52-60. (2014) Zbl1344.11008MR1417443
- Sándor, J., Theory of Means and Their Inequalities, (2018), Available at http://www.math.ubbcluj.ro/ jsandor/lapok/Sandor-Jozsef-Theory of Means and Their Inequalities.pdf. (2018)
- Sándor, J., Crstici, B., 10.1007/1-4020-2547-5, Kluwer, Dordrecht (2004). (2004) Zbl1079.11001MR2119686DOI10.1007/1-4020-2547-5
- Solé, P., Planat, M., Extreme values of Dedekind’s -function, J. Comb. Number Theory 3 (2011), 33-38. (2011) Zbl1266.11107MR2908180
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.