Inequalities for the arithmetical functions of Euler and Dedekind

Horst Alzer; Man Kam Kwong

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 781-791
  • ISSN: 0011-4642

Abstract

top
For positive integers n , Euler’s phi function and Dedekind’s psi function are given by φ ( n ) = n p n p prime 1 - 1 p and ψ ( n ) = n p n p prime 1 + 1 p , respectively. We prove that for all n 2 we have 1 - 1 n n - 1 1 + 1 n n + 1 φ ( n ) n φ ( n ) ψ ( n ) n ψ ( n ) and φ ( n ) n ψ ( n ) ψ ( n ) n φ ( n ) 1 - 1 n n + 1 1 + 1 n n - 1 . The sign of equality holds if and only if n is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).

How to cite

top

Alzer, Horst, and Kwong, Man Kam. "Inequalities for the arithmetical functions of Euler and Dedekind." Czechoslovak Mathematical Journal 70.3 (2020): 781-791. <http://eudml.org/doc/297346>.

@article{Alzer2020,
abstract = {For positive integers $n$, Euler’s phi function and Dedekind’s psi function are given by \[ \phi (n)= n \prod \_\{\begin\{array\}\{c\} p\mid n \\ p \ \{\rm prime\}\end\{array\}\} \Bigl (1-\frac\{1\}\{p\}\Bigr ) \quad \mbox\{and\} \quad \psi (n)=n\prod \_\{\begin\{array\}\{c\} p\mid n \\ p \ \{\rm prime\}\end\{array\}\} \Bigl (1+\frac\{1\}\{p\}\Bigr ), \] respectively. We prove that for all $n\ge 2$ we have \[ \Bigl (1-\frac\{1\}\{n\}\Bigr )^\{n-1\}\Bigl (1+\frac\{1\}\{n\}\Bigr )^\{n+1\} \le \Bigl (\frac\{\phi (n)\}\{n\} \Bigr )^\{\phi (n)\} \Bigl ( \frac\{\psi (n)\}\{n\}\Bigr )^\{\psi (n)\} \] and \[ \Bigl (\frac\{\phi (n)\}\{n\} \Bigr )^\{\psi (n)\} \Bigl ( \frac\{\psi (n)\}\{n\}\Bigr )^\{\phi (n)\} \le \Bigl (1-\frac\{1\}\{n\}\Bigr )^\{n+1\}\Bigl (1+\frac\{1\}\{n\}\Bigr )^\{n-1\}. \] The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).},
author = {Alzer, Horst, Kwong, Man Kam},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler's phi function; Dedekind's psi function; inequalities},
language = {eng},
number = {3},
pages = {781-791},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inequalities for the arithmetical functions of Euler and Dedekind},
url = {http://eudml.org/doc/297346},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Alzer, Horst
AU - Kwong, Man Kam
TI - Inequalities for the arithmetical functions of Euler and Dedekind
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 781
EP - 791
AB - For positive integers $n$, Euler’s phi function and Dedekind’s psi function are given by \[ \phi (n)= n \prod _{\begin{array}{c} p\mid n \\ p \ {\rm prime}\end{array}} \Bigl (1-\frac{1}{p}\Bigr ) \quad \mbox{and} \quad \psi (n)=n\prod _{\begin{array}{c} p\mid n \\ p \ {\rm prime}\end{array}} \Bigl (1+\frac{1}{p}\Bigr ), \] respectively. We prove that for all $n\ge 2$ we have \[ \Bigl (1-\frac{1}{n}\Bigr )^{n-1}\Bigl (1+\frac{1}{n}\Bigr )^{n+1} \le \Bigl (\frac{\phi (n)}{n} \Bigr )^{\phi (n)} \Bigl ( \frac{\psi (n)}{n}\Bigr )^{\psi (n)} \] and \[ \Bigl (\frac{\phi (n)}{n} \Bigr )^{\psi (n)} \Bigl ( \frac{\psi (n)}{n}\Bigr )^{\phi (n)} \le \Bigl (1-\frac{1}{n}\Bigr )^{n+1}\Bigl (1+\frac{1}{n}\Bigr )^{n-1}. \] The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).
LA - eng
KW - Euler's phi function; Dedekind's psi function; inequalities
UR - http://eudml.org/doc/297346
ER -

References

top
  1. Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics, Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
  2. Atanassov, K. T., Note on ϕ , ψ and σ -functions III, Notes Number Theory Discrete Math. 17 (2011), 13-14. (2011) Zbl1259.11009MR1418823
  3. Kannan, V., Srikanth, R., Note on ϕ and ψ functions, Notes Number Theory Discrete Math. 19 (2013), 19-21. (2013) Zbl1329.11006
  4. Mitrinović, D. S., Sándor, J., Crstici, B., 10.1007/1-4020-3658-2, Mathematics and Its Applications 351, Kluwer, Dordrecht (1996). (1996) Zbl0862.11001MR1374329DOI10.1007/1-4020-3658-2
  5. Sándor, J., On certain inequalities for σ , ϕ , ψ and related functions, Notes Number Theory Discrete Math. 20 (2014), 52-60. (2014) Zbl1344.11008MR1417443
  6. Sándor, J., Theory of Means and Their Inequalities, (2018), Available at http://www.math.ubbcluj.ro/ jsandor/lapok/Sandor-Jozsef-Theory of Means and Their Inequalities.pdf. (2018) 
  7. Sándor, J., Crstici, B., 10.1007/1-4020-2547-5, Kluwer, Dordrecht (2004). (2004) Zbl1079.11001MR2119686DOI10.1007/1-4020-2547-5
  8. Solé, P., Planat, M., Extreme values of Dedekind’s ψ -function, J. Comb. Number Theory 3 (2011), 33-38. (2011) Zbl1266.11107MR2908180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.