Universal rates for estimating the residual waiting time in an intermittent way
Gusztáv Morvai; Benjamin Weiss
Kybernetika (2020)
- Volume: 56, Issue: 4, page 601-616
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMorvai, Gusztáv, and Weiss, Benjamin. "Universal rates for estimating the residual waiting time in an intermittent way." Kybernetika 56.4 (2020): 601-616. <http://eudml.org/doc/297351>.
@article{Morvai2020,
abstract = {A simple renewal process is a stochastic process $\lbrace X_n\rbrace $ taking values in $\lbrace 0,1\rbrace $ where the lengths of the runs of $1$’s between successive zeros are independent and identically distributed. After observing $\{X_0, X_1, \ldots X_n\}$ one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Kybernetika},
keywords = {statistical learning; statistical inference; prediction methods; renewal theory},
language = {eng},
number = {4},
pages = {601-616},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Universal rates for estimating the residual waiting time in an intermittent way},
url = {http://eudml.org/doc/297351},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Universal rates for estimating the residual waiting time in an intermittent way
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 601
EP - 616
AB - A simple renewal process is a stochastic process $\lbrace X_n\rbrace $ taking values in $\lbrace 0,1\rbrace $ where the lengths of the runs of $1$’s between successive zeros are independent and identically distributed. After observing ${X_0, X_1, \ldots X_n}$ one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal.
LA - eng
KW - statistical learning; statistical inference; prediction methods; renewal theory
UR - http://eudml.org/doc/297351
ER -
References
top- Algoet, P., 10.1109/18.335876, IEEE Trans. Inform. Theory 40 (1994), 609-634. MR1295308DOI10.1109/18.335876
- Bahr, B. von, Esseen, C. G., 10.1214/aoms/1177700291, Ann. Math. Statist. 36 (1965), 299-303. MR0170407DOI10.1214/aoms/1177700291
- Denby, L., Vardi, Y., 10.1080/00401706.1985.10488075, Technometrics 27 (1985), 4, 361-373. MR0811011DOI10.1080/00401706.1985.10488075
- Feller, W., An Introduction to Probability Theory and its Applications Vol. I. Third edition., John Wiley and Sons, Inc., New York - London - Sydney 1968. MR0228020
- Ghahramani, S., Fundamentals of Probability with Stochastic Processes. Third edition., Pearson Prentice Hall, Upper Saddle River NJ, 2005.
- Györfi, L., Ottucsák, G., 10.1109/tit.2007.894660, IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR2317147DOI10.1109/tit.2007.894660
- Khudanpur, S., Narayan, P., 10.1109/tit.2002.1003850, IEEE Trans. Inform. Theory 48 (2002), 1704-1713. MR1909484DOI10.1109/tit.2002.1003850
- Marcinkiewicz, J., Zygmund, A., Sur les foncions independantes., Fund. Math. 28 (1937), 60-90. MR0115885
- Morvai, G., Guessing the output of a stationary binary time series., In: Foundations of Statistical Inference (Y. Haitovsky, H. R. Lerche and Y. Ritov, eds.), Physika-Verlag 2003, pp. 207-215. MR2017826
- Morvai, G., Weiss, B., 10.1023/a:1025862222287, Acta Applic. Math. 79 (2003), 25-34. MR2021874DOI10.1023/a:1025862222287
- Morvai, G., Weiss, B., 10.1007/s00440-004-0386-3, Probab. Theory Related Fields 132 (2005), 1-12. MR2136864DOI10.1007/s00440-004-0386-3
- Morvai, G., Weiss, B., 10.1142/s021949370700213x, Stoch. Dynam. 7 (2007), 4, 417-437. Zbl1255.62228MR2378577DOI10.1142/s021949370700213x
- Morvai, G., Weiss, B., 10.1214/07-aap512, Ann. Appl. Prob. 18 (2008), 5, 1970-1992. Zbl1158.62053MR2462556DOI10.1214/07-aap512
- Morvai, G., Weiss, B., 10.1109/itwnit.2009.5158543, In: ITW 2009, IEEE Information Theory Workshop on Networking and Information Theory, 2009 pp. 67-70. MR3301776DOI10.1109/itwnit.2009.5158543
- Morvai, G., Weiss, B., 10.14736/kyb-2014-6-0869, Kybernetika 50 (2014), 6, 869-882. Zbl1308.62067MR3301776DOI10.14736/kyb-2014-6-0869
- Morvai, G., Weiss, B., 10.14736/kyb-2016-3-0348, Kybernetika 52 (2016), 3, 348-358. MR3532511DOI10.14736/kyb-2016-3-0348
- Nobel, A. B., 10.1109/tit.2002.806141, IEEE Trans. Inform. Theory 49 (2003), 83-98. MR1965889DOI10.1109/tit.2002.806141
- Peña, E. A., Strawderman, R., Hollander, M., 10.1198/016214501753381922, J. Amer. Statist. Assoc. 96 (2001), 456, 1299-1315. MR1946578DOI10.1198/016214501753381922
- Petrov, V. V., 10.1017/s001309150002335x, Clarendon Press, Oxford 1995. MR1353441DOI10.1017/s001309150002335x
- Ryabko, B. Y., Prediction of random sequences and universal coding., Probl. Inform. Trans. 24 (1988), 87-96. Zbl0666.94009MR0955983
- Shields, P. C., 10.1090/gsm/013, Graduate Studies in Mathematics 13, American Mathematical Society, Providence 1996. Zbl0879.28031MR1400225DOI10.1090/gsm/013
- Shiryayev, A. N., Probability. Second edition., Springer-Verlag, New York 1996. MR1368405
- Takahashi, H., 10.1109/tit.2011.2165791, IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999. MR2882275DOI10.1109/tit.2011.2165791
- Vardi, Y., 10.1214/aos/1176345870, Ann. Statist. (1982), 772-785. MR0663431DOI10.1214/aos/1176345870
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.