Universal rates for estimating the residual waiting time in an intermittent way

Gusztáv Morvai; Benjamin Weiss

Kybernetika (2020)

  • Volume: 56, Issue: 4, page 601-616
  • ISSN: 0023-5954

Abstract

top
A simple renewal process is a stochastic process { X n } taking values in { 0 , 1 } where the lengths of the runs of 1 ’s between successive zeros are independent and identically distributed. After observing X 0 , X 1 , ... X n one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal.

How to cite

top

Morvai, Gusztáv, and Weiss, Benjamin. "Universal rates for estimating the residual waiting time in an intermittent way." Kybernetika 56.4 (2020): 601-616. <http://eudml.org/doc/297351>.

@article{Morvai2020,
abstract = {A simple renewal process is a stochastic process $\lbrace X_n\rbrace $ taking values in $\lbrace 0,1\rbrace $ where the lengths of the runs of $1$’s between successive zeros are independent and identically distributed. After observing $\{X_0, X_1, \ldots X_n\}$ one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Kybernetika},
keywords = {statistical learning; statistical inference; prediction methods; renewal theory},
language = {eng},
number = {4},
pages = {601-616},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Universal rates for estimating the residual waiting time in an intermittent way},
url = {http://eudml.org/doc/297351},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Universal rates for estimating the residual waiting time in an intermittent way
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 601
EP - 616
AB - A simple renewal process is a stochastic process $\lbrace X_n\rbrace $ taking values in $\lbrace 0,1\rbrace $ where the lengths of the runs of $1$’s between successive zeros are independent and identically distributed. After observing ${X_0, X_1, \ldots X_n}$ one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution of the time to renewal.
LA - eng
KW - statistical learning; statistical inference; prediction methods; renewal theory
UR - http://eudml.org/doc/297351
ER -

References

top
  1. Algoet, P., 10.1109/18.335876, IEEE Trans. Inform. Theory 40 (1994), 609-634. MR1295308DOI10.1109/18.335876
  2. Bahr, B. von, Esseen, C. G., 10.1214/aoms/1177700291, Ann. Math. Statist. 36 (1965), 299-303. MR0170407DOI10.1214/aoms/1177700291
  3. Denby, L., Vardi, Y., 10.1080/00401706.1985.10488075, Technometrics 27 (1985), 4, 361-373. MR0811011DOI10.1080/00401706.1985.10488075
  4. Feller, W., An Introduction to Probability Theory and its Applications Vol. I. Third edition., John Wiley and Sons, Inc., New York - London - Sydney 1968. MR0228020
  5. Ghahramani, S., Fundamentals of Probability with Stochastic Processes. Third edition., Pearson Prentice Hall, Upper Saddle River NJ, 2005. 
  6. Györfi, L., Ottucsák, G., 10.1109/tit.2007.894660, IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR2317147DOI10.1109/tit.2007.894660
  7. Khudanpur, S., Narayan, P., 10.1109/tit.2002.1003850, IEEE Trans. Inform. Theory 48 (2002), 1704-1713. MR1909484DOI10.1109/tit.2002.1003850
  8. Marcinkiewicz, J., Zygmund, A., Sur les foncions independantes., Fund. Math. 28 (1937), 60-90. MR0115885
  9. Morvai, G., Guessing the output of a stationary binary time series., In: Foundations of Statistical Inference (Y. Haitovsky, H. R. Lerche and Y. Ritov, eds.), Physika-Verlag 2003, pp. 207-215. MR2017826
  10. Morvai, G., Weiss, B., 10.1023/a:1025862222287, Acta Applic. Math. 79 (2003), 25-34. MR2021874DOI10.1023/a:1025862222287
  11. Morvai, G., Weiss, B., 10.1007/s00440-004-0386-3, Probab. Theory Related Fields 132 (2005), 1-12. MR2136864DOI10.1007/s00440-004-0386-3
  12. Morvai, G., Weiss, B., 10.1142/s021949370700213x, Stoch. Dynam. 7 (2007), 4, 417-437. Zbl1255.62228MR2378577DOI10.1142/s021949370700213x
  13. Morvai, G., Weiss, B., 10.1214/07-aap512, Ann. Appl. Prob. 18 (2008), 5, 1970-1992. Zbl1158.62053MR2462556DOI10.1214/07-aap512
  14. Morvai, G., Weiss, B., 10.1109/itwnit.2009.5158543, In: ITW 2009, IEEE Information Theory Workshop on Networking and Information Theory, 2009 pp. 67-70. MR3301776DOI10.1109/itwnit.2009.5158543
  15. Morvai, G., Weiss, B., 10.14736/kyb-2014-6-0869, Kybernetika 50 (2014), 6, 869-882. Zbl1308.62067MR3301776DOI10.14736/kyb-2014-6-0869
  16. Morvai, G., Weiss, B., 10.14736/kyb-2016-3-0348, Kybernetika 52 (2016), 3, 348-358. MR3532511DOI10.14736/kyb-2016-3-0348
  17. Nobel, A. B., 10.1109/tit.2002.806141, IEEE Trans. Inform. Theory 49 (2003), 83-98. MR1965889DOI10.1109/tit.2002.806141
  18. Peña, E. A., Strawderman, R., Hollander, M., 10.1198/016214501753381922, J. Amer. Statist. Assoc. 96 (2001), 456, 1299-1315. MR1946578DOI10.1198/016214501753381922
  19. Petrov, V. V., 10.1017/s001309150002335x, Clarendon Press, Oxford 1995. MR1353441DOI10.1017/s001309150002335x
  20. Ryabko, B. Y., Prediction of random sequences and universal coding., Probl. Inform. Trans. 24 (1988), 87-96. Zbl0666.94009MR0955983
  21. Shields, P. C., 10.1090/gsm/013, Graduate Studies in Mathematics 13, American Mathematical Society, Providence 1996. Zbl0879.28031MR1400225DOI10.1090/gsm/013
  22. Shiryayev, A. N., Probability. Second edition., Springer-Verlag, New York 1996. MR1368405
  23. Takahashi, H., 10.1109/tit.2011.2165791, IEEE Trans. Inform. Theory 57 (2011), 10, 6995-6999. MR2882275DOI10.1109/tit.2011.2165791
  24. Vardi, Y., 10.1214/aos/1176345870, Ann. Statist. (1982), 772-785. MR0663431DOI10.1214/aos/1176345870

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.