Distributed resilient filtering of large-scale systems with channel scheduling
Lili Xu; Sunjie Zhang; Licheng Wang
Kybernetika (2020)
- Volume: 56, Issue: 1, page 170-188
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topXu, Lili, Zhang, Sunjie, and Wang, Licheng. "Distributed resilient filtering of large-scale systems with channel scheduling." Kybernetika 56.1 (2020): 170-188. <http://eudml.org/doc/297353>.
@article{Xu2020,
abstract = {This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.},
author = {Xu, Lili, Zhang, Sunjie, Wang, Licheng},
journal = {Kybernetika},
keywords = {distributed filtering; large-scale systems; energy constraints; sensor networks; power systems},
language = {eng},
number = {1},
pages = {170-188},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed resilient filtering of large-scale systems with channel scheduling},
url = {http://eudml.org/doc/297353},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Xu, Lili
AU - Zhang, Sunjie
AU - Wang, Licheng
TI - Distributed resilient filtering of large-scale systems with channel scheduling
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 170
EP - 188
AB - This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.
LA - eng
KW - distributed filtering; large-scale systems; energy constraints; sensor networks; power systems
UR - http://eudml.org/doc/297353
ER -
References
top- Bacha, S., Li, H., Montenegro-Martinez, D., 10.1109/tie.2019.2901189, IEEE Trans. Industr. Electron. 66 (2019), 8, 6412-6415. DOI10.1109/tie.2019.2901189
- Chen, W., Ding, D., Dong, H., Wei, G., 10.1109/tsmc.2019.2905253, IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 8, 1688-1697. DOI10.1109/tsmc.2019.2905253
- Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case., IEEE Trans. Cybernet. (2018), 1-11.
- Chen, B., Hu, G., Ho, Daniel W. C., Yu, L., 10.1016/j.automatica.2018.10.025, Automatica 99 (2019), 228-236. MR3875467DOI10.1016/j.automatica.2018.10.025
- Chen, B., Zhang, W. A., Yu, L., 10.1109/tsp.2013.2294603, IEEE Trans. Signal Process. 62 (2014), 4, 797-812. MR3160314DOI10.1109/tsp.2013.2294603
- Dashkovskiy, S. N., Rüffer, B. S., Wirth, F. R., 10.1137/090746483, SIAM J. Control Optim. 48 (2010), 6, 4089-4118. MR2645475DOI10.1137/090746483
- Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
- Ding, L., Han, Q.-L., Wang, L., Sindi, E., 10.1109/tii.2018.2799239, IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935. DOI10.1109/tii.2018.2799239
- Ding, D., Wang, Z., Dong, H., Shu, H., 10.1016/j.automatica.2012.05.070, Automatica 48 (2012), 8, 1575-1585. MR2950405DOI10.1016/j.automatica.2012.05.070
- Ding, D., Wang, Z., Han, Q.-L., 10.1109/tac.2019.2934389, IEEE Trans. Automat. Control (2019), 1-1. DOI10.1109/tac.2019.2934389
- Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
- Farina, M., Ferrari-Trecate, G., Scattolini, R., 10.1016/j.automatica.2010.02.010, Automatica 46 (2010), 910-918. MR2877165DOI10.1016/j.automatica.2010.02.010
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI10.1109/tcyb.2017.2769722
- Haber, A., Verhaegen, M., 10.1109/tac.2013.2272151, IEEE Trans. Automat. Control 58 (2013), 11, 2834-2847. MR3125992DOI10.1109/tac.2013.2272151
- Han, D., Wu, J., Zhang, H., 10.1016/j.automatica.2016.09.015, Automatica 75 (2017), 260-270. MR3582179DOI10.1016/j.automatica.2016.09.015
- Hu, S., Yue, D., Han, Q.-L., 10.1109/tcyb.2019.2903817, IEEE Trans. Cybernet. (2019), 1-13. MR3632431DOI10.1109/tcyb.2019.2903817
- Hu, J., Wang, Z., Liu, S., Gao, H., 10.1016/j.automatica.2015.11.008, Automatica 64 (2016), 155-162. MR3433092DOI10.1016/j.automatica.2015.11.008
- Khan, U. A., Moura, J. M. F., 10.1109/tsp.2008.927480, IEEE Trans. Signal Process. 56 (2008), 10, 4919-4935. MR2517222DOI10.1109/tsp.2008.927480
- Kim, H., Park, J., Joo, Y., 10.1016/j.fss.2017.10.010, Fuzzy Sets Systems 344 (2018), 145-162. MR3811679DOI10.1016/j.fss.2017.10.010
- Liang, J., Wang, F., Wang, Z., 10.1016/j.automatica.2018.06.044, Automatica 96 (2018), 166-177. MR3844960DOI10.1016/j.automatica.2018.06.044
- Liu, Q., Wang, Z., He, X., 10.1109/tsp.2016.2634541, IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309. MR3597280DOI10.1109/tsp.2016.2634541
- Liu, J., Yao, Q., Hu, Y., 10.1016/j.energy.2019.01.071, Energy 172 (2019), 555-565. MR3889781DOI10.1016/j.energy.2019.01.071
- Liu, A., Yu, L., Zhang, W.-A., Chen, M. Z. Q., 10.1109/tcsi.2012.2226499, IEEE Trans. Circuits Systems I: Regular Papers 60 (2013), 7, 1823-1834. MR3072453DOI10.1109/tcsi.2012.2226499
- Ma, L., Xu, M., Jia, R., Ye, H., 10.14736/kyb-2014-4-0491, Kybernetika 50 (2014),4, 491-511. MR3275081DOI10.14736/kyb-2014-4-0491
- Marelli, D., Fu, M., 10.1016/j.automatica.2014.10.077, Automatica 51 (2015) 27-39. MR3284750DOI10.1016/j.automatica.2014.10.077
- Nourian, M., Leong, A., Dey, S., 10.1109/tac.2014.2319011, IEEE Trans. Automat. Control 59 (2014), 8, 2128-2143. MR3245252DOI10.1109/tac.2014.2319011
- Pavelkova, L., Nonlinear Bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation., Kybernetika 47 (2011), 3, 370-384. MR2857195
- Rana, M., Li, L., Su, S. W, 10.1109/tii.2017.2782750, IEEE Trans.Ind. Inform. 14 (2018), 8, 3368-3375. DOI10.1109/tii.2017.2782750
- Riverso, S., Trecate, G. F., Hycon2 benchmark: Power network system., arXiv: 1207.2000vl (2012).
- Shi, L., Cheng, P., Chen, J., 10.1016/j.automatica.2011.02.037, Automatica 47 (2011), 8, 1693-1698. MR2886772DOI10.1016/j.automatica.2011.02.037
- Wang, J., Zhang, X.-M., Han, Q.-L., 10.1109/tnnls.2015.2411734, IEEE Trans. Neural Networks Learning Systems 27 (2016), 1, 77-88. MR3465626DOI10.1109/tnnls.2015.2411734
- Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/TCYB.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/TCYB.2019.2900478
- Yan, H., Li, P., Zhang, H., Zhan, X., Yang, F., Event-triggered distributed fusion estimation of networked multisensor systems with limited information., IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-8.
- Yang, G. H., Wang, J. L., 10.1109/9.905707, IEEE Trans. Automat. Control 46 (2001), 2, 343-348. MR1814586DOI10.1109/9.905707
- Yang, W., Zhang, Y., Chen, G., 10.1016/j.automatica.2018.12.027, Automatica 102 (2019), 4, 34-44. MR3901679DOI10.1016/j.automatica.2018.12.027
- Yu, W., Deng, Z., Zhou, H., Zeng, X., 10.14736/kyb-2017-5-0747, Kybernetika 53 (2017),5, 747-764. MR3750101DOI10.14736/kyb-2017-5-0747
- Zhang, X.-M., Han, Q.-L., Peng, C., 10.1109/JAS.2019.1911651, IEEE/CAA J. Autom. Sinica (2019), 1-17. MR3841465DOI10.1109/JAS.2019.1911651
- Zhang, X.-M., Han, Q.-L., Wang, Z. D., Zhang, B.-L., 10.1109/tcyb.2017.2690676, IEEE Trans. Cybernet. 47 (2017), 10, 3184-3194. MR4064243DOI10.1109/tcyb.2017.2690676
- Zhang, P., Wang, J., 10.14736/kyb-2016-4-0589, Kybernetika 52 (2016),4, 589-606. MR3565771DOI10.14736/kyb-2016-4-0589
- Zhang, D., Yu, L., Zhang, W.-A., 10.1109/jsen.2014.2386348, IEEE Sensors J. 15 (2015), 5, 3026-3036. DOI10.1109/jsen.2014.2386348
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.