Distributed resilient filtering of large-scale systems with channel scheduling

Lili Xu; Sunjie Zhang; Licheng Wang

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 170-188
  • ISSN: 0023-5954

Abstract

top
This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.

How to cite

top

Xu, Lili, Zhang, Sunjie, and Wang, Licheng. "Distributed resilient filtering of large-scale systems with channel scheduling." Kybernetika 56.1 (2020): 170-188. <http://eudml.org/doc/297353>.

@article{Xu2020,
abstract = {This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.},
author = {Xu, Lili, Zhang, Sunjie, Wang, Licheng},
journal = {Kybernetika},
keywords = {distributed filtering; large-scale systems; energy constraints; sensor networks; power systems},
language = {eng},
number = {1},
pages = {170-188},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed resilient filtering of large-scale systems with channel scheduling},
url = {http://eudml.org/doc/297353},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Xu, Lili
AU - Zhang, Sunjie
AU - Wang, Licheng
TI - Distributed resilient filtering of large-scale systems with channel scheduling
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 170
EP - 188
AB - This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.
LA - eng
KW - distributed filtering; large-scale systems; energy constraints; sensor networks; power systems
UR - http://eudml.org/doc/297353
ER -

References

top
  1. Bacha, S., Li, H., Montenegro-Martinez, D., 10.1109/tie.2019.2901189, IEEE Trans. Industr. Electron. 66 (2019), 8, 6412-6415. DOI10.1109/tie.2019.2901189
  2. Chen, W., Ding, D., Dong, H., Wei, G., 10.1109/tsmc.2019.2905253, IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 8, 1688-1697. DOI10.1109/tsmc.2019.2905253
  3. Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., H containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case., IEEE Trans. Cybernet. (2018), 1-11. 
  4. Chen, B., Hu, G., Ho, Daniel W. C., Yu, L., 10.1016/j.automatica.2018.10.025, Automatica 99 (2019), 228-236. MR3875467DOI10.1016/j.automatica.2018.10.025
  5. Chen, B., Zhang, W. A., Yu, L., 10.1109/tsp.2013.2294603, IEEE Trans. Signal Process. 62 (2014), 4, 797-812. MR3160314DOI10.1109/tsp.2013.2294603
  6. Dashkovskiy, S. N., Rüffer, B. S., Wirth, F. R., 10.1137/090746483, SIAM J. Control Optim. 48 (2010), 6, 4089-4118. MR2645475DOI10.1137/090746483
  7. Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
  8. Ding, L., Han, Q.-L., Wang, L., Sindi, E., 10.1109/tii.2018.2799239, IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935. DOI10.1109/tii.2018.2799239
  9. Ding, D., Wang, Z., Dong, H., Shu, H., 10.1016/j.automatica.2012.05.070, Automatica 48 (2012), 8, 1575-1585. MR2950405DOI10.1016/j.automatica.2012.05.070
  10. Ding, D., Wang, Z., Han, Q.-L., 10.1109/tac.2019.2934389, IEEE Trans. Automat. Control (2019), 1-1. DOI10.1109/tac.2019.2934389
  11. Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
  12. Farina, M., Ferrari-Trecate, G., Scattolini, R., 10.1016/j.automatica.2010.02.010, Automatica 46 (2010), 910-918. MR2877165DOI10.1016/j.automatica.2010.02.010
  13. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
  14. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI10.1109/tcyb.2017.2769722
  15. Haber, A., Verhaegen, M., 10.1109/tac.2013.2272151, IEEE Trans. Automat. Control 58 (2013), 11, 2834-2847. MR3125992DOI10.1109/tac.2013.2272151
  16. Han, D., Wu, J., Zhang, H., 10.1016/j.automatica.2016.09.015, Automatica 75 (2017), 260-270. MR3582179DOI10.1016/j.automatica.2016.09.015
  17. Hu, S., Yue, D., Han, Q.-L., 10.1109/tcyb.2019.2903817, IEEE Trans. Cybernet. (2019), 1-13. MR3632431DOI10.1109/tcyb.2019.2903817
  18. Hu, J., Wang, Z., Liu, S., Gao, H., 10.1016/j.automatica.2015.11.008, Automatica 64 (2016), 155-162. MR3433092DOI10.1016/j.automatica.2015.11.008
  19. Khan, U. A., Moura, J. M. F., 10.1109/tsp.2008.927480, IEEE Trans. Signal Process. 56 (2008), 10, 4919-4935. MR2517222DOI10.1109/tsp.2008.927480
  20. Kim, H., Park, J., Joo, Y., 10.1016/j.fss.2017.10.010, Fuzzy Sets Systems 344 (2018), 145-162. MR3811679DOI10.1016/j.fss.2017.10.010
  21. Liang, J., Wang, F., Wang, Z., 10.1016/j.automatica.2018.06.044, Automatica 96 (2018), 166-177. MR3844960DOI10.1016/j.automatica.2018.06.044
  22. Liu, Q., Wang, Z., He, X., 10.1109/tsp.2016.2634541, IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309. MR3597280DOI10.1109/tsp.2016.2634541
  23. Liu, J., Yao, Q., Hu, Y., 10.1016/j.energy.2019.01.071, Energy 172 (2019), 555-565. MR3889781DOI10.1016/j.energy.2019.01.071
  24. Liu, A., Yu, L., Zhang, W.-A., Chen, M. Z. Q., 10.1109/tcsi.2012.2226499, IEEE Trans. Circuits Systems I: Regular Papers 60 (2013), 7, 1823-1834. MR3072453DOI10.1109/tcsi.2012.2226499
  25. Ma, L., Xu, M., Jia, R., Ye, H., 10.14736/kyb-2014-4-0491, Kybernetika 50 (2014),4, 491-511. MR3275081DOI10.14736/kyb-2014-4-0491
  26. Marelli, D., Fu, M., 10.1016/j.automatica.2014.10.077, Automatica 51 (2015) 27-39. MR3284750DOI10.1016/j.automatica.2014.10.077
  27. Nourian, M., Leong, A., Dey, S., 10.1109/tac.2014.2319011, IEEE Trans. Automat. Control 59 (2014), 8, 2128-2143. MR3245252DOI10.1109/tac.2014.2319011
  28. Pavelkova, L., Nonlinear Bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation., Kybernetika 47 (2011), 3, 370-384. MR2857195
  29. Rana, M., Li, L., Su, S. W, 10.1109/tii.2017.2782750, IEEE Trans.Ind. Inform. 14 (2018), 8, 3368-3375. DOI10.1109/tii.2017.2782750
  30. Riverso, S., Trecate, G. F., Hycon2 benchmark: Power network system., arXiv: 1207.2000vl (2012). 
  31. Shi, L., Cheng, P., Chen, J., 10.1016/j.automatica.2011.02.037, Automatica 47 (2011), 8, 1693-1698. MR2886772DOI10.1016/j.automatica.2011.02.037
  32. Wang, J., Zhang, X.-M., Han, Q.-L., 10.1109/tnnls.2015.2411734, IEEE Trans. Neural Networks Learning Systems 27 (2016), 1, 77-88. MR3465626DOI10.1109/tnnls.2015.2411734
  33. Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/TCYB.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/TCYB.2019.2900478
  34. Yan, H., Li, P., Zhang, H., Zhan, X., Yang, F., Event-triggered distributed fusion estimation of networked multisensor systems with limited information., IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-8. 
  35. Yang, G. H., Wang, J. L., 10.1109/9.905707, IEEE Trans. Automat. Control 46 (2001), 2, 343-348. MR1814586DOI10.1109/9.905707
  36. Yang, W., Zhang, Y., Chen, G., 10.1016/j.automatica.2018.12.027, Automatica 102 (2019), 4, 34-44. MR3901679DOI10.1016/j.automatica.2018.12.027
  37. Yu, W., Deng, Z., Zhou, H., Zeng, X., 10.14736/kyb-2017-5-0747, Kybernetika 53 (2017),5, 747-764. MR3750101DOI10.14736/kyb-2017-5-0747
  38. Zhang, X.-M., Han, Q.-L., Peng, C., 10.1109/JAS.2019.1911651, IEEE/CAA J. Autom. Sinica (2019), 1-17. MR3841465DOI10.1109/JAS.2019.1911651
  39. Zhang, X.-M., Han, Q.-L., Wang, Z. D., Zhang, B.-L., 10.1109/tcyb.2017.2690676, IEEE Trans. Cybernet. 47 (2017), 10, 3184-3194. MR4064243DOI10.1109/tcyb.2017.2690676
  40. Zhang, P., Wang, J., 10.14736/kyb-2016-4-0589, Kybernetika 52 (2016),4, 589-606. MR3565771DOI10.14736/kyb-2016-4-0589
  41. Zhang, D., Yu, L., Zhang, W.-A., 10.1109/jsen.2014.2386348, IEEE Sensors J. 15 (2015), 5, 3026-3036. DOI10.1109/jsen.2014.2386348

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.