Exponential filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays
Li Ma; Meimei Xu; Ruting Jia; Hui Ye
Kybernetika (2014)
- Volume: 50, Issue: 4, page 491-511
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMa, Li, et al. "Exponential $H_{\infty }$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays." Kybernetika 50.4 (2014): 491-511. <http://eudml.org/doc/262043>.
@article{Ma2014,
abstract = {This paper is concerned with the exponential $H_\{\infty \}$ filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and $H_\{\infty \}$ control problem. Then, a mean-square exponentially stable and Markovian jump filter is designed such that the filtering error system is mean-square exponentially stable and the $H_\{\infty \}$ performance of estimation error can be ensured. Besides, the derivative of discrete time-varying delay $h(t)$ satisfies $\dot\{h\}(t)\le \eta $ and simultaneously the decay rate $\beta $ can be finite positive value without equation constraint. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.},
author = {Ma, Li, Xu, Meimei, Jia, Ruting, Ye, Hui},
journal = {Kybernetika},
keywords = {stochastic systems; distributed time-varying delay; $H_\{\infty \}$ filter; linear matrix inequality; stochastic systems; distributed time-varying delay; filter; linear matrix inequality},
language = {eng},
number = {4},
pages = {491-511},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exponential $H_\{\infty \}$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays},
url = {http://eudml.org/doc/262043},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Ma, Li
AU - Xu, Meimei
AU - Jia, Ruting
AU - Ye, Hui
TI - Exponential $H_{\infty }$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 491
EP - 511
AB - This paper is concerned with the exponential $H_{\infty }$ filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and $H_{\infty }$ control problem. Then, a mean-square exponentially stable and Markovian jump filter is designed such that the filtering error system is mean-square exponentially stable and the $H_{\infty }$ performance of estimation error can be ensured. Besides, the derivative of discrete time-varying delay $h(t)$ satisfies $\dot{h}(t)\le \eta $ and simultaneously the decay rate $\beta $ can be finite positive value without equation constraint. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
LA - eng
KW - stochastic systems; distributed time-varying delay; $H_{\infty }$ filter; linear matrix inequality; stochastic systems; distributed time-varying delay; filter; linear matrix inequality
UR - http://eudml.org/doc/262043
ER -
References
top- Balasubramaniam, P., Rakkiyappan, R., Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays., Nonlinear Anal. Hybrid Syst. 3 (2009), 207-214. Zbl1184.93093MR2535910
- Cao, Y. Y., Lam, J., Hu, L., 10.1016/j.jfranklin.2003.09.001, J. Franklin Inst. 340 (2003), 423-434. Zbl1040.93068MR2034548DOI10.1016/j.jfranklin.2003.09.001
- Chen, W. H., Zheng, W., 10.1016/j.automatica.2006.07.019, Automatica 43 (2007), 95-104. Zbl1140.93466MR2266774DOI10.1016/j.automatica.2006.07.019
- Chung, K. L., A Course In Probability Theory., Academic Press, London 2001. Zbl0980.60001MR1796326
- Ding, Y. C., Zhu, H., Zhong, S. M., Zhang, Y. P., 10.1016/j.cnsns.2011.11.033, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3070-3081. Zbl1243.62118MR2880476DOI10.1016/j.cnsns.2011.11.033
- Fiagbedzi, Y. A., Pearson, A. E., 10.1016/0005-1098(87)90005-7, Automatica 23 (1987), 311-326. Zbl0629.93046MR0899830DOI10.1016/0005-1098(87)90005-7
- Gronwall, T. H., 10.2307/1967124, Ann. Math. 20 (1919), 292-296. MR1502565DOI10.2307/1967124
- Gu, K., An integral inequality in the stability problem of time-delay systems., In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2805-2810.
- Gu, K., 10.1002/rnc.847, Int. J. Robust Nonlinear Control 13 (2003), 819-831. Zbl1039.93031MR1998314DOI10.1002/rnc.847
- Gu, K., Han, Q. L., Albert, C. J., Niculescu, S. I., 10.1080/00207170010031486, Int. J. Control 74 (2001), 737-744. Zbl1015.34061MR1826755DOI10.1080/00207170010031486
- Hale, J. K., Theory Of Functional Differential Equations., Springer, New York 1977. Zbl0662.34064MR0508721
- Hale, J. K., Lunel, S. M. V., Introduction To Functional Differential Equations., Springer, New York 1993. Zbl0787.34002MR1243878
- Han, Q. L., 10.1016/j.automatica.2004.05.002, Automatica 40 (2004), 1791-1796. Zbl1075.93032MR2155472DOI10.1016/j.automatica.2004.05.002
- Han, Q. L., 10.1016/j.automatica.2008.08.005, Automatica 45 (2009), 517-524. Zbl1158.93385MR2527352DOI10.1016/j.automatica.2008.08.005
- Han, Q. L., 10.1016/j.automatica.2009.03.019, Automatica 45 (2009), 1948-1952. MR2879521DOI10.1016/j.automatica.2009.03.019
- Lam, J., Gao, H., Wang, C., model reduction of linear systems with distributed delay., Control Theory and Applications, IEE Proc. 152 (2005), 662-674.
- Lawrence, C. E., An introduction to stochastic differential equations., math.berkeley.edu/ evans/SDE.course.pdf. MR3154922
- Li, X. G., Zhu, X. J., 10.1016/j.automatica.2007.12.009, Automatica 44 (2008), 2197-2201. Zbl1283.93212MR2531353DOI10.1016/j.automatica.2007.12.009
- Liu, Y., Wang, Z., Liu, X., 10.1002/rnc.1185, Int. J. Robust Nonlinear Control 17 (2007), 1525-1551. Zbl1128.93015MR2356998DOI10.1002/rnc.1185
- Liu, Y., Wang, Z., Liu, X., An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays., Nonlinear Anal. Hybrid Syst. 2 (2008), 110-120. Zbl1157.93039MR2381041
- Ma, L., Da, F. P., 10.1002/rnc.1477, Int. J. Robust and Nonlinear Control 20 (2010), 802-817. MR2657281DOI10.1002/rnc.1477
- Ma, L., Da, F. P., Zhang, K. J., 10.1109/TCSI.2010.2089554, IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (2011), 994-1007. MR2827933DOI10.1109/TCSI.2010.2089554
- Mariton, M., Jump Linear Systems In Automatic Control., Marcel Dekker, New York 1990.
- Mao, X. R., 10.1109/TAC.2002.803529, IEEE Trans. Automat. Control 47 (2002), 1604-1612. MR1929934DOI10.1109/TAC.2002.803529
- Richard, J. P., 10.1016/S0005-1098(03)00167-5, Automatica 39 (2003), 1667-1694. Zbl1145.93302MR2141765DOI10.1016/S0005-1098(03)00167-5
- Wang, Z., Lauria, S., Fang, J., Liu, X., 10.1016/j.chaos.2005.10.061, Chaos, Solitons Fractals 32 (2007), 62-72. MR2271102DOI10.1016/j.chaos.2005.10.061
- Wang, Y., Zhang, H., control for uncertain Markovian jump systems with mode-dependent mixed delays., Progress Natural Sci. 18 (2008), 309-314. MR2419784
- Wang, G. L., Zhang, Q. L., Yang, C. Y., Exponential filtering for time-varying delay systems: Markovian approach., Signal Process. 91 (2011), 1852-1862. Zbl1217.93170
- Wei, G. L., Wang, Z., Shu, H., Fang, J., 10.1080/00207170701203608, Int. J. Control 80 (2008), 885-897. Zbl1124.93056MR2334740DOI10.1080/00207170701203608
- Wu, L., Shi, P., Wang, C., Gao, H., Delay-dependent robust and filtering for LPV systems with both discrete and distributed delays., Control Theory and Applications, IEE Proc. 153 (2006), 483-492. MR2351871
- Xie, L., Fridman, E., Shaked, U., 10.1109/9.975483, IEEE Trans. Automat. Control 46 (2001), 1930-1935. Zbl1017.93038MR1878215DOI10.1109/9.975483
- Xiong, L., Zhong, S., Tian, J., 10.1016/j.chaos.2009.03.002, Chaos, Solitons Fractals 42 (2009), 1073-1079. Zbl1198.93170MR2554818DOI10.1016/j.chaos.2009.03.002
- Xu, S., Chen, T., 10.1109/TCSII.2003.822432, IEEE Trans. Circuits Syst.-II: Express Briefs 51 (2004), 195-201. DOI10.1109/TCSII.2003.822432
- Xu, S., Chu, Y., Lu, J., Zou, Y., 10.1109/TSMCA.2006.871648, IEEE Trans. Systems, Man, Cybernetics - Part A: Systems and Humans 36 (2006), 540-548. DOI10.1109/TSMCA.2006.871648
- Xu, S., Lam, J., Chen, T., Zou, Y., 10.1109/TSP.2005.855109, IEEE Trans. Signal Process. 53 (2005), 3764-3772. MR2239897DOI10.1109/TSP.2005.855109
- Yu, X. G., 10.1016/j.jfranklin.2008.05.003, J. Franklin Inst. 345 (2008), 877-890. Zbl1201.93126MR2478513DOI10.1016/j.jfranklin.2008.05.003
- Yue, D., Han, Q. L., 10.1109/TSP.2004.836535, IEEE Trans. Signal Process. 52 (2004), 3200-3212. MR2095601DOI10.1109/TSP.2004.836535
- Yue, D., Han, Q. L., 10.1109/TAC.2004.841935, IEEE Trans. Automat. Control 50 (2005), 217-222. MR2116427DOI10.1109/TAC.2004.841935
- Zhang, X. M., Han, Q. L., 10.1002/rnc.1407, Int. J. Robust and Nonlinear Control 19 (2009), 1376-1396. Zbl1169.93418MR2537820DOI10.1002/rnc.1407
- Zhang, X. M., Han, Q. L., 10.1016/j.automatica.2007.04.024, Automatica 44 (2008), 157-166. MR2530479DOI10.1016/j.automatica.2007.04.024
- Zhang, X. M., Han, Q. L., 10.1109/TSP.2011.2175224, IEEE Trans. Signal Process. 60 (2012), 956-961. MR2919490DOI10.1109/TSP.2011.2175224
- Zhang, X. M., Han, Q. L., 10.1016/j.automatica.2013.01.060, Automatica 49 (2013), 1428-1435. MR3044024DOI10.1016/j.automatica.2013.01.060
- Zhao, X. D., Zeng, Q. S., 10.1016/j.jfranklin.2010.03.009, J. Franklin Inst. 347 (2010), 863-874. Zbl1286.93199MR2645396DOI10.1016/j.jfranklin.2010.03.009
- Zhou, W., Li, M., 10.1016/j.amc.2009.05.025, Appl. Math. Comput. 215 (2009), 503-513. Zbl1206.65025MR2561507DOI10.1016/j.amc.2009.05.025
Citations in EuDML Documents
top- Hui Li, Ming Lyu, Baozhu Du, Event-based multi-objective filtering for multi-rate time-varying systems with random sensor saturation
- Lili Xu, Sunjie Zhang, Licheng Wang, Distributed resilient filtering of large-scale systems with channel scheduling
- Altuğ İftar, Extension principle and controller design for systems with distributed time-delay
- Lingchun Li, Guangming Zhang, Meiying Ou, Yujie Wang, sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.