Exponential H filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays

Li Ma; Meimei Xu; Ruting Jia; Hui Ye

Kybernetika (2014)

  • Volume: 50, Issue: 4, page 491-511
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with the exponential H filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and H control problem. Then, a mean-square exponentially stable and Markovian jump filter is designed such that the filtering error system is mean-square exponentially stable and the H performance of estimation error can be ensured. Besides, the derivative of discrete time-varying delay h ( t ) satisfies h ˙ ( t ) η and simultaneously the decay rate β can be finite positive value without equation constraint. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.

How to cite

top

Ma, Li, et al. "Exponential $H_{\infty }$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays." Kybernetika 50.4 (2014): 491-511. <http://eudml.org/doc/262043>.

@article{Ma2014,
abstract = {This paper is concerned with the exponential $H_\{\infty \}$ filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and $H_\{\infty \}$ control problem. Then, a mean-square exponentially stable and Markovian jump filter is designed such that the filtering error system is mean-square exponentially stable and the $H_\{\infty \}$ performance of estimation error can be ensured. Besides, the derivative of discrete time-varying delay $h(t)$ satisfies $\dot\{h\}(t)\le \eta $ and simultaneously the decay rate $\beta $ can be finite positive value without equation constraint. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.},
author = {Ma, Li, Xu, Meimei, Jia, Ruting, Ye, Hui},
journal = {Kybernetika},
keywords = {stochastic systems; distributed time-varying delay; $H_\{\infty \}$ filter; linear matrix inequality; stochastic systems; distributed time-varying delay; filter; linear matrix inequality},
language = {eng},
number = {4},
pages = {491-511},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exponential $H_\{\infty \}$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays},
url = {http://eudml.org/doc/262043},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Ma, Li
AU - Xu, Meimei
AU - Jia, Ruting
AU - Ye, Hui
TI - Exponential $H_{\infty }$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 491
EP - 511
AB - This paper is concerned with the exponential $H_{\infty }$ filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and $H_{\infty }$ control problem. Then, a mean-square exponentially stable and Markovian jump filter is designed such that the filtering error system is mean-square exponentially stable and the $H_{\infty }$ performance of estimation error can be ensured. Besides, the derivative of discrete time-varying delay $h(t)$ satisfies $\dot{h}(t)\le \eta $ and simultaneously the decay rate $\beta $ can be finite positive value without equation constraint. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
LA - eng
KW - stochastic systems; distributed time-varying delay; $H_{\infty }$ filter; linear matrix inequality; stochastic systems; distributed time-varying delay; filter; linear matrix inequality
UR - http://eudml.org/doc/262043
ER -

References

top
  1. Balasubramaniam, P., Rakkiyappan, R., Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays., Nonlinear Anal. Hybrid Syst. 3 (2009), 207-214. Zbl1184.93093MR2535910
  2. Cao, Y. Y., Lam, J., Hu, L., 10.1016/j.jfranklin.2003.09.001, J. Franklin Inst. 340 (2003), 423-434. Zbl1040.93068MR2034548DOI10.1016/j.jfranklin.2003.09.001
  3. Chen, W. H., Zheng, W., 10.1016/j.automatica.2006.07.019, Automatica 43 (2007), 95-104. Zbl1140.93466MR2266774DOI10.1016/j.automatica.2006.07.019
  4. Chung, K. L., A Course In Probability Theory., Academic Press, London 2001. Zbl0980.60001MR1796326
  5. Ding, Y. C., Zhu, H., Zhong, S. M., Zhang, Y. P., 10.1016/j.cnsns.2011.11.033, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3070-3081. Zbl1243.62118MR2880476DOI10.1016/j.cnsns.2011.11.033
  6. Fiagbedzi, Y. A., Pearson, A. E., 10.1016/0005-1098(87)90005-7, Automatica 23 (1987), 311-326. Zbl0629.93046MR0899830DOI10.1016/0005-1098(87)90005-7
  7. Gronwall, T. H., 10.2307/1967124, Ann. Math. 20 (1919), 292-296. MR1502565DOI10.2307/1967124
  8. Gu, K., An integral inequality in the stability problem of time-delay systems., In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2805-2810. 
  9. Gu, K., 10.1002/rnc.847, Int. J. Robust Nonlinear Control 13 (2003), 819-831. Zbl1039.93031MR1998314DOI10.1002/rnc.847
  10. Gu, K., Han, Q. L., Albert, C. J., Niculescu, S. I., 10.1080/00207170010031486, Int. J. Control 74 (2001), 737-744. Zbl1015.34061MR1826755DOI10.1080/00207170010031486
  11. Hale, J. K., Theory Of Functional Differential Equations., Springer, New York 1977. Zbl0662.34064MR0508721
  12. Hale, J. K., Lunel, S. M. V., Introduction To Functional Differential Equations., Springer, New York 1993. Zbl0787.34002MR1243878
  13. Han, Q. L., 10.1016/j.automatica.2004.05.002, Automatica 40 (2004), 1791-1796. Zbl1075.93032MR2155472DOI10.1016/j.automatica.2004.05.002
  14. Han, Q. L., 10.1016/j.automatica.2008.08.005, Automatica 45 (2009), 517-524. Zbl1158.93385MR2527352DOI10.1016/j.automatica.2008.08.005
  15. Han, Q. L., 10.1016/j.automatica.2009.03.019, Automatica 45 (2009), 1948-1952. MR2879521DOI10.1016/j.automatica.2009.03.019
  16. Lam, J., Gao, H., Wang, C., H model reduction of linear systems with distributed delay., Control Theory and Applications, IEE Proc. 152 (2005), 662-674. 
  17. Lawrence, C. E., An introduction to stochastic differential equations., math.berkeley.edu/ evans/SDE.course.pdf. MR3154922
  18. Li, X. G., Zhu, X. J., 10.1016/j.automatica.2007.12.009, Automatica 44 (2008), 2197-2201. Zbl1283.93212MR2531353DOI10.1016/j.automatica.2007.12.009
  19. Liu, Y., Wang, Z., Liu, X., 10.1002/rnc.1185, Int. J. Robust Nonlinear Control 17 (2007), 1525-1551. Zbl1128.93015MR2356998DOI10.1002/rnc.1185
  20. Liu, Y., Wang, Z., Liu, X., An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays., Nonlinear Anal. Hybrid Syst. 2 (2008), 110-120. Zbl1157.93039MR2381041
  21. Ma, L., Da, F. P., 10.1002/rnc.1477, Int. J. Robust and Nonlinear Control 20 (2010), 802-817. MR2657281DOI10.1002/rnc.1477
  22. Ma, L., Da, F. P., Zhang, K. J., 10.1109/TCSI.2010.2089554, IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (2011), 994-1007. MR2827933DOI10.1109/TCSI.2010.2089554
  23. Mariton, M., Jump Linear Systems In Automatic Control., Marcel Dekker, New York 1990. 
  24. Mao, X. R., 10.1109/TAC.2002.803529, IEEE Trans. Automat. Control 47 (2002), 1604-1612. MR1929934DOI10.1109/TAC.2002.803529
  25. Richard, J. P., 10.1016/S0005-1098(03)00167-5, Automatica 39 (2003), 1667-1694. Zbl1145.93302MR2141765DOI10.1016/S0005-1098(03)00167-5
  26. Wang, Z., Lauria, S., Fang, J., Liu, X., 10.1016/j.chaos.2005.10.061, Chaos, Solitons Fractals 32 (2007), 62-72. MR2271102DOI10.1016/j.chaos.2005.10.061
  27. Wang, Y., Zhang, H., H control for uncertain Markovian jump systems with mode-dependent mixed delays., Progress Natural Sci. 18 (2008), 309-314. MR2419784
  28. Wang, G. L., Zhang, Q. L., Yang, C. Y., Exponential H filtering for time-varying delay systems: Markovian approach., Signal Process. 91 (2011), 1852-1862. Zbl1217.93170
  29. Wei, G. L., Wang, Z., Shu, H., Fang, J., 10.1080/00207170701203608, Int. J. Control 80 (2008), 885-897. Zbl1124.93056MR2334740DOI10.1080/00207170701203608
  30. Wu, L., Shi, P., Wang, C., Gao, H., Delay-dependent robust H and L 2 - L filtering for LPV systems with both discrete and distributed delays., Control Theory and Applications, IEE Proc. 153 (2006), 483-492. MR2351871
  31. Xie, L., Fridman, E., Shaked, U., 10.1109/9.975483, IEEE Trans. Automat. Control 46 (2001), 1930-1935. Zbl1017.93038MR1878215DOI10.1109/9.975483
  32. Xiong, L., Zhong, S., Tian, J., 10.1016/j.chaos.2009.03.002, Chaos, Solitons Fractals 42 (2009), 1073-1079. Zbl1198.93170MR2554818DOI10.1016/j.chaos.2009.03.002
  33. Xu, S., Chen, T., 10.1109/TCSII.2003.822432, IEEE Trans. Circuits Syst.-II: Express Briefs 51 (2004), 195-201. DOI10.1109/TCSII.2003.822432
  34. Xu, S., Chu, Y., Lu, J., Zou, Y., 10.1109/TSMCA.2006.871648, IEEE Trans. Systems, Man, Cybernetics - Part A: Systems and Humans 36 (2006), 540-548. DOI10.1109/TSMCA.2006.871648
  35. Xu, S., Lam, J., Chen, T., Zou, Y., 10.1109/TSP.2005.855109, IEEE Trans. Signal Process. 53 (2005), 3764-3772. MR2239897DOI10.1109/TSP.2005.855109
  36. Yu, X. G., 10.1016/j.jfranklin.2008.05.003, J. Franklin Inst. 345 (2008), 877-890. Zbl1201.93126MR2478513DOI10.1016/j.jfranklin.2008.05.003
  37. Yue, D., Han, Q. L., 10.1109/TSP.2004.836535, IEEE Trans. Signal Process. 52 (2004), 3200-3212. MR2095601DOI10.1109/TSP.2004.836535
  38. Yue, D., Han, Q. L., 10.1109/TAC.2004.841935, IEEE Trans. Automat. Control 50 (2005), 217-222. MR2116427DOI10.1109/TAC.2004.841935
  39. Zhang, X. M., Han, Q. L., 10.1002/rnc.1407, Int. J. Robust and Nonlinear Control 19 (2009), 1376-1396. Zbl1169.93418MR2537820DOI10.1002/rnc.1407
  40. Zhang, X. M., Han, Q. L., 10.1016/j.automatica.2007.04.024, Automatica 44 (2008), 157-166. MR2530479DOI10.1016/j.automatica.2007.04.024
  41. Zhang, X. M., Han, Q. L., 10.1109/TSP.2011.2175224, IEEE Trans. Signal Process. 60 (2012), 956-961. MR2919490DOI10.1109/TSP.2011.2175224
  42. Zhang, X. M., Han, Q. L., 10.1016/j.automatica.2013.01.060, Automatica 49 (2013), 1428-1435. MR3044024DOI10.1016/j.automatica.2013.01.060
  43. Zhao, X. D., Zeng, Q. S., 10.1016/j.jfranklin.2010.03.009, J. Franklin Inst. 347 (2010), 863-874. Zbl1286.93199MR2645396DOI10.1016/j.jfranklin.2010.03.009
  44. Zhou, W., Li, M., 10.1016/j.amc.2009.05.025, Appl. Math. Comput. 215 (2009), 503-513. Zbl1206.65025MR2561507DOI10.1016/j.amc.2009.05.025

Citations in EuDML Documents

top
  1. Hui Li, Ming Lyu, Baozhu Du, Event-based multi-objective filtering for multi-rate time-varying systems with random sensor saturation
  2. Lili Xu, Sunjie Zhang, Licheng Wang, Distributed resilient filtering of large-scale systems with channel scheduling
  3. Altuğ İftar, Extension principle and controller design for systems with distributed time-delay
  4. Lingchun Li, Guangming Zhang, Meiying Ou, Yujie Wang, H sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.