Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings
Mitra Jalali; Abolfazl Tehranian; Reza Nikandish; Hamid Rasouli
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 27-34
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJalali, Mitra, et al. "Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 27-34. <http://eudml.org/doc/297380>.
@article{Jalali2020,
abstract = {Let $R$ be a commutative ring with identity and $A(R)$ be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of $R$ is defined as the graph $\{\rm SAG\}(R)$ with the vertex set $A(R)^*=A(R)\setminus \lbrace 0\rbrace $ and two distinct vertices $I$ and $J$ are adjacent if and only if $I\cap \{\rm Ann\}(J)\ne (0)$ and $J\cap \{\rm Ann\}(I)\ne (0)$. In this paper, the perfectness of $\{\rm SAG\}(R)$ for some classes of rings $R$ is investigated.},
author = {Jalali, Mitra, Tehranian, Abolfazl, Nikandish, Reza, Rasouli, Hamid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strongly annihilating-ideal graph; perfect graph; chromatic number; clique number},
language = {eng},
number = {1},
pages = {27-34},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings},
url = {http://eudml.org/doc/297380},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Jalali, Mitra
AU - Tehranian, Abolfazl
AU - Nikandish, Reza
AU - Rasouli, Hamid
TI - Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 27
EP - 34
AB - Let $R$ be a commutative ring with identity and $A(R)$ be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of $R$ is defined as the graph ${\rm SAG}(R)$ with the vertex set $A(R)^*=A(R)\setminus \lbrace 0\rbrace $ and two distinct vertices $I$ and $J$ are adjacent if and only if $I\cap {\rm Ann}(J)\ne (0)$ and $J\cap {\rm Ann}(I)\ne (0)$. In this paper, the perfectness of ${\rm SAG}(R)$ for some classes of rings $R$ is investigated.
LA - eng
KW - strongly annihilating-ideal graph; perfect graph; chromatic number; clique number
UR - http://eudml.org/doc/297380
ER -
References
top- Aalipour G., Akbari S., Nikandish R., Nikmehr M. J., Shaveisi F., 10.1016/j.disc.2011.10.020, Discrete Math. 312 (2012), no. 17, 2620–2626. MR2935413DOI10.1016/j.disc.2011.10.020
- Anderson D. F., Livingston P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), no. 2, 434–447. Zbl1035.13004MR1700509DOI10.1006/jabr.1998.7840
- Badawi A., 10.1080/00927872.2012.707262, Comm. Algebra 42 (2014), no. 1, 108–121. MR3169557DOI10.1080/00927872.2012.707262
- Beck I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), no. 1, 208–226. Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Behboodi M., Rakeei Z., 10.1142/S0219498811004896, J. Algebra Appl. 10 (2011), no. 4, 727–739. MR2834112DOI10.1142/S0219498811004896
- Chudnovsky M., Robertson N., Seymour P., Thomas R., 10.4007/annals.2006.164.51, Ann. of Math. (2) 164 (2006), no. 1, 51–229. MR2233847DOI10.4007/annals.2006.164.51
- Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, New York, 2000. Zbl1218.05001MR1743598
- Nikandish R., Nikmehr M. J., Tohidi N. Kh., 10.1007/s40590-017-0179-1, Bol. Soc. Mat. Mex. (3) 24 (2018), no. 2, 307–318. MR3854466DOI10.1007/s40590-017-0179-1
- Sharp R. Y., Steps in Commutative Algebra, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000. MR1817605
- Taheri R., Behboodi M., Tehranian A., The spectrum subgraph of the annihilating-ideal graph of a commutative ring, J. Algebra Appl. 14 (2015), no. 8, 1550130, 19 pages. MR3339815
- Tohidi N. Kh., Nikmehr M. J., Nikandish R., 10.1142/S1793830917500288, Discrete Math. Algorithms Appl. 9 (2017), no. 2, 1750028, 13 pages. MR3635064DOI10.1142/S1793830917500288
- West D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996. Zbl1121.05304MR1367739
- Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl0746.16001MR1144522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.