Block matrix approximation via entropy loss function
Malwina Janiszewska; Augustyn Markiewicz; Monika Mokrzycka
Applications of Mathematics (2020)
- Volume: 65, Issue: 6, page 829-844
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJaniszewska, Malwina, Markiewicz, Augustyn, and Mokrzycka, Monika. "Block matrix approximation via entropy loss function." Applications of Mathematics 65.6 (2020): 829-844. <http://eudml.org/doc/297382>.
@article{Janiszewska2020,
abstract = {The aim of the paper is to present a procedure for the approximation of a symmetric positive definite matrix by symmetric block partitioned matrices with structured off-diagonal blocks. The entropy loss function is chosen as approximation criterion. This procedure is applied in a simulation study of the statistical problem of covariance structure identification.},
author = {Janiszewska, Malwina, Markiewicz, Augustyn, Mokrzycka, Monika},
journal = {Applications of Mathematics},
keywords = {approximation; block covariance structure; entropy loss function},
language = {eng},
number = {6},
pages = {829-844},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Block matrix approximation via entropy loss function},
url = {http://eudml.org/doc/297382},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Janiszewska, Malwina
AU - Markiewicz, Augustyn
AU - Mokrzycka, Monika
TI - Block matrix approximation via entropy loss function
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 6
SP - 829
EP - 844
AB - The aim of the paper is to present a procedure for the approximation of a symmetric positive definite matrix by symmetric block partitioned matrices with structured off-diagonal blocks. The entropy loss function is chosen as approximation criterion. This procedure is applied in a simulation study of the statistical problem of covariance structure identification.
LA - eng
KW - approximation; block covariance structure; entropy loss function
UR - http://eudml.org/doc/297382
ER -
References
top- Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., Pan, J., 10.1016/j.laa.2016.08.013, Linear Algebra Appl. 510 (2016), 124-145. (2016) Zbl1352.62090MR3551623DOI10.1016/j.laa.2016.08.013
- Dey, D. K., Srinivasan, C., 10.1214/aos/1176349756, Ann. Stat. 13 (1985), 1581-1591. (1985) Zbl0582.62042MR0811511DOI10.1214/aos/1176349756
- Fackler, P. L., Notes on matrix calculus, Available at https://studyres.com/doc/15927579/notes-on-matrix-calculus (2005), 14 pages. (2005)
- Filipiak, K., Klein, D., 10.1016/j.laa.2018.08.031, Linear Algebra Appl. 559 (2018), 11-33. (2018) Zbl1402.62117MR3857535DOI10.1016/j.laa.2018.08.031
- Filipiak, K., Klein, D., Markiewicz, A., Mokrzycka, M., 10.1016/j.laa.2020.10.013, (to appear) in Linear Algebra Appl. (2020). MR3857535DOI10.1016/j.laa.2020.10.013
- Filipiak, K., Klein, D., Mokrzycka, M., 10.13001/1081-3810.3740, Electron. J. Linear Algebra 33 (2018), 83-98. (2018) Zbl1406.15020MR3962256DOI10.13001/1081-3810.3740
- Filipiak, K., Markiewicz, A., Mieldzioc, A., Sawikowska, A., 10.13001/1081-3810.3750, Electron. J. Linear Algebra 33 (2018), 74-82. (2018) Zbl1406.15028MR3962255DOI10.13001/1081-3810.3750
- Gilson, M., Dahmen, D., Moreno-Bote, R., Insabato, A., Helias, M., 10.1101/562546, Available at https://www.biorxiv.org/content/10.1101/562546v4 (2020), 39 pages. (2020) DOI10.1101/562546
- James, W., Stein, C., Estimation with quadratic loss, Proc. 4th Berkeley Symp. Math. Stat. Probab. Vol. 1 University of California Press, Berkeley (1961), 361-379. (1961) Zbl1281.62026MR0133191
- John, M., Mieldzioc, A., 10.1080/03610918.2019.1614622, Commun. Stat., Simulation Comput. 49 (2020), 734-752. (2020) MR4068485DOI10.1080/03610918.2019.1614622
- Kollo, T., Rosen, D. von, 10.1007/1-4020-3419-9, Mathematics and Its Applications 579. Springer, Dordrecht (2005). (2005) Zbl1079.62059MR2162145DOI10.1007/1-4020-3419-9
- Lin, L., Higham, N. J., Pan, J., 10.1016/j.csda.2013.10.004, Comput. Stat. Data Anal. 72 (2014), 315-327. (2014) Zbl06983908MR3139365DOI10.1016/j.csda.2013.10.004
- Lu, N., Zimmerman, D. L., 10.1016/j.spl.2005.04.020, Stat. Probab. Lett. 73 (2005), 449-457. (2005) Zbl1071.62052MR2187860DOI10.1016/j.spl.2005.04.020
- Magnus, J. R., Neudecker, H., 10.1017/S0266466600011476, Econom. Theory 2 (1986), 157-190. (1986) DOI10.1017/S0266466600011476
- Magnus, J. R., Neudecker, H., 10.1002/9781119541219, Wiley Series in Probability and Statistics. Wiley, Chichester (1999). (1999) Zbl0912.15003MR1698873DOI10.1002/9781119541219
- Mieldzioc, A., Mokrzycka, M., Sawikowska, A., 10.2478/bile-2019-0010, Biometrical Lett. 56 (2019), 165-181. (2019) DOI10.2478/bile-2019-0010
- Pan, J.-X., Fang, K.-T., 10.1007/978-0-387-21812-0, Springer Series in Statistics. Springer, New York (2002). (2002) Zbl1024.62025MR1937691DOI10.1007/978-0-387-21812-0
- Srivastava, M. S., Rosen, T. von, Rosen, D. von, 10.3103/S1066530708040066, Math. Methods Stat. 17 (2008), 357-370. (2008) Zbl1231.62101MR2483463DOI10.3103/S1066530708040066
- Szatrowski, T. H., Estimation and testing for block compound symmetry and other patterned covariance matrices with linear and non-linear structure, Technical Report OLK NSF 107, Stanford University, Stanford (1976), 187 pages. (1976) MR2626007
- Szatrowski, T. H., 10.3102/10769986007001003, J. Educ. Behavioral Stat. 7 (1982), 3-18. (1982) DOI10.3102/10769986007001003
- Szczepańska-Álvarez, A., Hao, C., Liang, Y., Rosen, D. von, 10.1080/03610926.2016.1165852, Commun. Stat., Theory Methods 46 (2017), 7902-7915. (2017) Zbl1373.62262MR3660028DOI10.1080/03610926.2016.1165852
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.