# On the compositum of all degree $d$ extensions of a number field

Itamar Gal^{[1]}; Robert Grizzard^{[2]}

- [1] Department of Mathematics, University of Texas at Austin 2515 Speedway, Stop C1200 Austin, TX 78712, U.S.A.
- [2] Department of Mathematics University of Texas at Austin 2515 Speedway, Stop C1200 Austin, TX 78712, U.S.A.

Journal de Théorie des Nombres de Bordeaux (2014)

- Volume: 26, Issue: 3, page 655-672
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topGal, Itamar, and Grizzard, Robert. "On the compositum of all degree $d$ extensions of a number field." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 655-672. <http://eudml.org/doc/275714>.

@article{Gal2014,

abstract = {We study the compositum $k^\{[d]\}$ of all degree $d$ extensions of a number field $k$ in a fixed algebraic closure. We show $k^\{[d]\}$ contains all subextensions of degree less than $d$ if and only if $d \le 4$. We prove that for $d > 2$ there is no bound $c = c(d)$ on the degree of elements required to generate finite subextensions of $k^\{[d]\}/k$. Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of $d$, but that one can take $c=d$ when $d$ is prime. This question was inspired by work of Bombieri and Zannier on heights in similar extensions, and previously considered by Checcoli.},

affiliation = {Department of Mathematics, University of Texas at Austin 2515 Speedway, Stop C1200 Austin, TX 78712, U.S.A.; Department of Mathematics University of Texas at Austin 2515 Speedway, Stop C1200 Austin, TX 78712, U.S.A.},

author = {Gal, Itamar, Grizzard, Robert},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {Number fields; infinite algebraic extensions; Galois theory; permutation groups},

language = {eng},

month = {12},

number = {3},

pages = {655-672},

publisher = {Société Arithmétique de Bordeaux},

title = {On the compositum of all degree $d$ extensions of a number field},

url = {http://eudml.org/doc/275714},

volume = {26},

year = {2014},

}

TY - JOUR

AU - Gal, Itamar

AU - Grizzard, Robert

TI - On the compositum of all degree $d$ extensions of a number field

JO - Journal de Théorie des Nombres de Bordeaux

DA - 2014/12//

PB - Société Arithmétique de Bordeaux

VL - 26

IS - 3

SP - 655

EP - 672

AB - We study the compositum $k^{[d]}$ of all degree $d$ extensions of a number field $k$ in a fixed algebraic closure. We show $k^{[d]}$ contains all subextensions of degree less than $d$ if and only if $d \le 4$. We prove that for $d > 2$ there is no bound $c = c(d)$ on the degree of elements required to generate finite subextensions of $k^{[d]}/k$. Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of $d$, but that one can take $c=d$ when $d$ is prime. This question was inspired by work of Bombieri and Zannier on heights in similar extensions, and previously considered by Checcoli.

LA - eng

KW - Number fields; infinite algebraic extensions; Galois theory; permutation groups

UR - http://eudml.org/doc/275714

ER -

## References

top- Y. Berkovich, Groups of prime power order, Vol. 1, Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH & Co. KG, Berlin, (2008), with a foreword by Zvonimir Janko. Zbl1168.20001MR2464640
- E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs, 4 Cambridge University Press, Cambridge, (2006). Zbl1115.11034MR2216774
- E. Bombieri and U. Zannier, A note on heights in certain infinite extensions of $\mathbb{Q}$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Mat. Appl., 9, 12, (2001), 5–14. Zbl1072.11077MR1898444
- G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra, 11, 8, (1983), 863–911. Zbl0518.20003MR695893
- S. CheccoliFields of algebraic numbers with bounded local degrees and their properties, Trans. Amer. Math. Soc., 365, 4, (2013), 2223–2240. Zbl1281.11098MR3009657
- S. Checcoli and M. Widmer, On the Northcott property and other properties related to polynomial mappings, Math. Proc. Cambridge Philos. Soc., 155, 1, (2013), 1–12. Zbl1290.11139MR3065255
- S. Checcoli and U. Zannier, On fields of algebraic numbers with bounded local degrees, C. R. Math. Acad. Sci. Paris, 349, 1-2, (2011), 11–14. Zbl1225.11145MR2755687
- J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, (1996). Zbl0951.20001MR1409812
- K. Doerk and T. Hawkes, Finite soluble groups, volume 4 of de Gruyter Expositions in Mathematics, Walter de Gruyter & Co., Berlin, (1992). Zbl0753.20001MR1169099
- D. S. Dummit and R. M. Foote, Abstract algebra, John Wiley & Sons Inc., Hoboken, NJ, third edition, (2004). Zbl1037.00003MR2286236
- W. Feit, Some consequences of the classification of finite simple groups, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., 37, (1980), Amer. Math. Soc., Providence, R.I., 175–181. Zbl0454.20014MR604576
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, The Clarendon Press Oxford University Press, New York, fifth edition, (1979). Zbl0058.03301MR568909
- A. Hulpke, Transitive permutation groups - A GAP data library www.gap-system.org/Datalib/trans.html.
- D. W. Masser, The discriminants of special equations, Math. Gaz., 50, 372, (1966), 158–160.
- J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, (2008). Zbl1136.11001MR2392026
- O. Neumann, On the imbedding of quadratic extensions into Galois extensions with symmetric group, in Proceedings of the conference on algebraic geometry (Berlin, 1985), Teubner-Texte Math., 92, (1986), Leipzig, Teubner, 285–295. Zbl0627.12007MR922920
- V. V. Prasolov, Polynomials, volume 11 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, (2004), translated from the 2001 Russian second edition by Dimitry Leites. Zbl1063.12001MR2082772
- J.-P. Serre, Topics in Galois theory, volume 1 of Research Notes in Mathematics, Jones and Bartlett Publishers, Boston, MA, (1992). Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author. Zbl0746.12001MR1162313
- The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.5.4, (2012).
- M. Widmer, On certain infinite extensions of the rationals with Northcott property, Monatsh. Math., 162, 3, (2011), 341–353. Zbl1220.11133MR2775852
- H. Wielandt, Finite permutation groups, translated from the German by R. Bercov. Academic Press, New York, (1964). Zbl0138.02501MR183775

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.