Strong 𝐗 -robustness of interval max-min matrices

Helena Myšková; Ján Plavka

Kybernetika (2021)

  • Volume: 57, Issue: 4, page 594-612
  • ISSN: 0023-5954

Abstract

top
In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix A is called strongly robust if the orbit x , A x , A 2 x , reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced and efficient algorithms for verifying the strong X-robustness is described. The strong X-robustness of a max-min matrix is extended to interval vectors X and interval matrices A using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong X-robustness of interval circulant matrices is presented.

How to cite

top

Myšková, Helena, and Plavka, Ján. "Strong $\mathbf {X}$-robustness of interval max-min matrices." Kybernetika 57.4 (2021): 594-612. <http://eudml.org/doc/297506>.

@article{Myšková2021,
abstract = {In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix $A$ is called strongly robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced and efficient algorithms for verifying the strong X-robustness is described. The strong X-robustness of a max-min matrix is extended to interval vectors X and interval matrices A using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong X-robustness of interval circulant matrices is presented.},
author = {Myšková, Helena, Plavka, Ján},
journal = {Kybernetika},
keywords = {max-min algebra; interval matrix; strong robustness; AE(EA) robustness},
language = {eng},
number = {4},
pages = {594-612},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Strong $\mathbf \{X\}$-robustness of interval max-min matrices},
url = {http://eudml.org/doc/297506},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Myšková, Helena
AU - Plavka, Ján
TI - Strong $\mathbf {X}$-robustness of interval max-min matrices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 594
EP - 612
AB - In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix $A$ is called strongly robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced and efficient algorithms for verifying the strong X-robustness is described. The strong X-robustness of a max-min matrix is extended to interval vectors X and interval matrices A using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong X-robustness of interval circulant matrices is presented.
LA - eng
KW - max-min algebra; interval matrix; strong robustness; AE(EA) robustness
UR - http://eudml.org/doc/297506
ER -

References

top
  1. Butkovič, P., Cuninghame-Green, R. A., , Linear Algebra Appl 421 (2007), 370-381. DOI
  2. Butkovič, P., Cuninghame-Green, R. A., Gaubert, S., , SIAM J. Matrix Anal. A 21 (2009), 1412-1431. DOI
  3. Butkovič, P., Schneider, H., Sergeev, S., , SIAM J. Control Optim. 50 (2012), 3029-3051. DOI
  4. Cechlárová, K., , Linear Algebra Appl. 175 (1992), 63-73. Zbl0866.15009DOI
  5. Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl1154.65036
  6. Gavalec, M., Periods of special fuzzy matrices., Tatra Mt. Math. Publ. 16 (1999), 47-60. 
  7. Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004. 
  8. Gavalec, M., Plavka, J., Tomášková, H., , Lin. Algebra Appl. 440 (2014), 24-33. DOI
  9. Golan, J. S., Semi-rings and Their Applications., Springer, Berlin 1999. 
  10. Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work., Princeton University Press, Princeton 2005. 
  11. Hladík, M., , Linear Algebra Appl. 465 (2015), 221-238. DOI
  12. Kolokoltsov, V. N., Maslov, V. P., Idempotent Analysis and its Applications., Kluwer, Dordrecht 1997. Zbl0941.93001
  13. Molnárová, M., Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 3350-3364. DOI
  14. Myšková, H., On an algorithm for testing T4 solvability of max-plus interval systems., Kybernetika 48 (2012), 924-938. 
  15. Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 2757-2769. DOI
  16. Myšková, H., Plavka, J., , Lin. Algebra Appl. 445 (2013), 85-102. DOI
  17. Myšková, H., Plavka, J., , Discrete Appl Math 267 (2019), 142-150. DOI
  18. Myšková, H., Plavka, J., , Fuzzy Sets Syst. 384 (2020), 91-104. DOI
  19. Plavka, J., 10.1016/j.dam.2005.02.017, Discrete Appl Math 150 (2005), 16-28. DOI10.1016/j.dam.2005.02.017
  20. Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159 (2011), 381-388. Zbl1225.15027DOI10.1016/j.dam.2010.11.020
  21. Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Appl. Math. 160 (2012), 640-647. DOI10.1016/j.dam.2011.11.010
  22. Plavka, J., , Discrete Appl. Math. 173 (2014), 92-101. DOI
  23. Plavka, J., , Kybernetika 52 (2016), 1-14. DOI
  24. Semančíková, B., , Linear Algebra Appl. 414 (2006), 38-63. DOI
  25. Tan, Yi-Jia, , Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005DOI
  26. Tan, Yi-Jia, , Linear Algebra Appl 374 (2003), 87-106. DOI
  27. Zimmernann, K., Extremální algebra (in Czech)., Ekon. ústav ČSAV Praha, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.