Strong -robustness of interval max-min matrices
Kybernetika (2021)
- Volume: 57, Issue: 4, page 594-612
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMyšková, Helena, and Plavka, Ján. "Strong $\mathbf {X}$-robustness of interval max-min matrices." Kybernetika 57.4 (2021): 594-612. <http://eudml.org/doc/297506>.
@article{Myšková2021,
abstract = {In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix $A$ is called strongly robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced and efficient algorithms for verifying the strong X-robustness is described. The strong X-robustness of a max-min matrix is extended to interval vectors X and interval matrices A using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong X-robustness of interval circulant matrices is presented.},
author = {Myšková, Helena, Plavka, Ján},
journal = {Kybernetika},
keywords = {max-min algebra; interval matrix; strong robustness; AE(EA) robustness},
language = {eng},
number = {4},
pages = {594-612},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Strong $\mathbf \{X\}$-robustness of interval max-min matrices},
url = {http://eudml.org/doc/297506},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Myšková, Helena
AU - Plavka, Ján
TI - Strong $\mathbf {X}$-robustness of interval max-min matrices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 594
EP - 612
AB - In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix $A$ is called strongly robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced and efficient algorithms for verifying the strong X-robustness is described. The strong X-robustness of a max-min matrix is extended to interval vectors X and interval matrices A using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong X-robustness of interval circulant matrices is presented.
LA - eng
KW - max-min algebra; interval matrix; strong robustness; AE(EA) robustness
UR - http://eudml.org/doc/297506
ER -
References
top- Butkovič, P., Cuninghame-Green, R. A., , Linear Algebra Appl 421 (2007), 370-381. DOI
- Butkovič, P., Cuninghame-Green, R. A., Gaubert, S., , SIAM J. Matrix Anal. A 21 (2009), 1412-1431. DOI
- Butkovič, P., Schneider, H., Sergeev, S., , SIAM J. Control Optim. 50 (2012), 3029-3051. DOI
- Cechlárová, K., , Linear Algebra Appl. 175 (1992), 63-73. Zbl0866.15009DOI
- Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl1154.65036
- Gavalec, M., Periods of special fuzzy matrices., Tatra Mt. Math. Publ. 16 (1999), 47-60.
- Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004.
- Gavalec, M., Plavka, J., Tomášková, H., , Lin. Algebra Appl. 440 (2014), 24-33. DOI
- Golan, J. S., Semi-rings and Their Applications., Springer, Berlin 1999.
- Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work., Princeton University Press, Princeton 2005.
- Hladík, M., , Linear Algebra Appl. 465 (2015), 221-238. DOI
- Kolokoltsov, V. N., Maslov, V. P., Idempotent Analysis and its Applications., Kluwer, Dordrecht 1997. Zbl0941.93001
- Molnárová, M., Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 3350-3364. DOI
- Myšková, H., On an algorithm for testing T4 solvability of max-plus interval systems., Kybernetika 48 (2012), 924-938.
- Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 2757-2769. DOI
- Myšková, H., Plavka, J., , Lin. Algebra Appl. 445 (2013), 85-102. DOI
- Myšková, H., Plavka, J., , Discrete Appl Math 267 (2019), 142-150. DOI
- Myšková, H., Plavka, J., , Fuzzy Sets Syst. 384 (2020), 91-104. DOI
- Plavka, J., 10.1016/j.dam.2005.02.017, Discrete Appl Math 150 (2005), 16-28. DOI10.1016/j.dam.2005.02.017
- Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159 (2011), 381-388. Zbl1225.15027DOI10.1016/j.dam.2010.11.020
- Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Appl. Math. 160 (2012), 640-647. DOI10.1016/j.dam.2011.11.010
- Plavka, J., , Discrete Appl. Math. 173 (2014), 92-101. DOI
- Plavka, J., , Kybernetika 52 (2016), 1-14. DOI
- Semančíková, B., , Linear Algebra Appl. 414 (2006), 38-63. DOI
- Tan, Yi-Jia, , Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005DOI
- Tan, Yi-Jia, , Linear Algebra Appl 374 (2003), 87-106. DOI
- Zimmernann, K., Extremální algebra (in Czech)., Ekon. ústav ČSAV Praha, 1976.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.