Computing the greatest -eigenvector of a matrix in max-min algebra
Kybernetika (2016)
- Volume: 52, Issue: 1, page 1-14
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPlavka, Ján. "Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra." Kybernetika 52.1 (2016): 1-14. <http://eudml.org/doc/276804>.
@article{Plavka2016,
abstract = {A vector $x$ is said to be an eigenvector of a square max-min matrix $A$ if $A\otimes x=x$. An eigenvector $x$ of $A$ is called the greatest $\textit \{\textbf \{X\}\}$-eigenvector of $A$ if $x\in \textit \{\textbf \{X\}\}=\lbrace x; \{\underline\{x\}\}\le x\le \{\overline\{x\}\}\rbrace $ and $y\le x$ for each eigenvector $y\in \textit \{\textbf \{X\}\}$. A max-min matrix $A$ is called strongly $\textit \{\textbf \{X\}\}$-robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest $\textit \{\textbf \{X\}\}$-eigenvector with any starting vector of $\textit \{\textbf \{X\}\}$. We suggest an $O(n^3)$ algorithm for computing the greatest $\textit \{\textbf \{X\}\}$-eigenvector of $A$ and study the strong $\textit \{\textbf \{X\}\}$-robustness. The necessary and sufficient conditions for strong $\textit \{\textbf \{X\}\}$-robustness are introduced and an efficient algorithm for verifying these conditions is described.},
author = {Plavka, Ján},
journal = {Kybernetika},
keywords = {eigenvector; interval vector; max-min matrix},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Computing the greatest $\{\bf X\}$-eigenvector of a matrix in max-min algebra},
url = {http://eudml.org/doc/276804},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Plavka, Ján
TI - Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 1
EP - 14
AB - A vector $x$ is said to be an eigenvector of a square max-min matrix $A$ if $A\otimes x=x$. An eigenvector $x$ of $A$ is called the greatest $\textit {\textbf {X}}$-eigenvector of $A$ if $x\in \textit {\textbf {X}}=\lbrace x; {\underline{x}}\le x\le {\overline{x}}\rbrace $ and $y\le x$ for each eigenvector $y\in \textit {\textbf {X}}$. A max-min matrix $A$ is called strongly $\textit {\textbf {X}}$-robust if the orbit $x,A\otimes x, A^2\otimes x,\dots $ reaches the greatest $\textit {\textbf {X}}$-eigenvector with any starting vector of $\textit {\textbf {X}}$. We suggest an $O(n^3)$ algorithm for computing the greatest $\textit {\textbf {X}}$-eigenvector of $A$ and study the strong $\textit {\textbf {X}}$-robustness. The necessary and sufficient conditions for strong $\textit {\textbf {X}}$-robustness are introduced and an efficient algorithm for verifying these conditions is described.
LA - eng
KW - eigenvector; interval vector; max-min matrix
UR - http://eudml.org/doc/276804
ER -
References
top- Butkovič, P., 10.1007/978-1-84996-299-5, Springer, 2010. DOI10.1007/978-1-84996-299-5
- Cechlárová, K., 10.1016/0024-3795(92)90302-q, Linear Algebra Appl. 175 (1992), 63-73. Zbl0756.15014MR1179341DOI10.1016/0024-3795(92)90302-q
- Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K., Linear Optimization Problems with Inexact Data., Springer-Verlag, Berlin 2006. Zbl1106.90051MR2218777
- Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl1154.65036MR2426231
- Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004.
- Gavalec, M., Plavka, J., Fast algorithm for extremal biparametric eigenproblem., Acta Electrotechnica et Informatica 7 (2007), 3. MR2655335
- Gavalec, M., Plavka, J., Monotone interval eigenproblem in max-min algebra., Kybernetika 46 (2010), 3, 387-396. Zbl1202.15013MR2676076
- Lacko, V., Berežný, Š., The color-balanced spanning tree problem., Kybernetika 41 (2005), 539-546. Zbl1249.05053MR2180362
- Molnárová, M., Pribiš, J., 10.1016/s0166-218x(99)00242-5, Discrete Applied Mathematics 103 (2000), 167-175. Zbl0952.05043MR1762209DOI10.1016/s0166-218x(99)00242-5
- Molnárová, M., Myšková, H., Plavka, J., 10.1016/j.laa.2012.12.020, Linear Algebra and Its Appl. 438 (2013), 8, 3350-3364. MR3023281DOI10.1016/j.laa.2012.12.020
- Myšková, H., 10.2478/v10198-012-0032-4, Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI10.2478/v10198-012-0032-4
- Myšková, H., 10.2478/v10198-012-0033-3, Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI10.2478/v10198-012-0033-3
- Plavka, J., Szabó, P., The algorithm for the eigenproblem of an -triangular Toeplitz matrices in max-plus algebra., Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
- Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Applied Math. 159 (2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
- Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Applied Math. 160 (2012), 640-647. MR2876347DOI10.1016/j.dam.2011.11.010
- Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 1, 128-140. Zbl1267.15026MR3097386
- Rohn, J., 10.1016/0024-3795(89)90004-9, Linear Algebra and Its Appl. 126 (1989), 39-78. Zbl1061.15003MR1040771DOI10.1016/0024-3795(89)90004-9
- Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
- Sergeev, S., 10.1016/j.laa.2011.02.038, Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl1226.15017MR2810668DOI10.1016/j.laa.2011.02.038
- Tan, Yi-Jia, 10.1016/s0024-3795(98)10105-2, Lin. Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/s0024-3795(98)10105-2
- Zimmermann, K., Extremální algebra (in Czech)., Ekon. ústav ČSAV Praha, 1976. MR0403587
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.