Monotonicity of first eigenvalues along the Yamabe flow

Liangdi Zhang

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 387-401
  • ISSN: 0011-4642

Abstract

top
We construct some nondecreasing quantities associated to the first eigenvalue of - Δ φ + c R ( c 1 2 ( n - 2 ) / ( n - 1 ) ) along the Yamabe flow, where Δ φ is the Witten-Laplacian operator with a C 2 function φ . We also prove a monotonic result on the first eigenvalue of - Δ φ + 1 4 ( n / ( n - 1 ) ) R along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of - Δ φ + c R a with a ( 0 , 1 ) along the Yamabe flow.

How to cite

top

Zhang, Liangdi. "Monotonicity of first eigenvalues along the Yamabe flow." Czechoslovak Mathematical Journal 71.2 (2021): 387-401. <http://eudml.org/doc/297520>.

@article{Zhang2021,
abstract = {We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$$(c\ge \frac\{1\}\{2\}(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac\{1\}\{4\} (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.},
author = {Zhang, Liangdi},
journal = {Czechoslovak Mathematical Journal},
keywords = {monotonicity; first eigenvalue; Witten-Laplacian operator; Yamabe flow},
language = {eng},
number = {2},
pages = {387-401},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monotonicity of first eigenvalues along the Yamabe flow},
url = {http://eudml.org/doc/297520},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Zhang, Liangdi
TI - Monotonicity of first eigenvalues along the Yamabe flow
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 387
EP - 401
AB - We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$$(c\ge \frac{1}{2}(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac{1}{4} (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.
LA - eng
KW - monotonicity; first eigenvalue; Witten-Laplacian operator; Yamabe flow
UR - http://eudml.org/doc/297520
ER -

References

top
  1. Cao, X., 10.1007/s00208-006-0043-5, Math. Ann. 337 (2007), 435-441. (2007) Zbl1105.53051MR2262792DOI10.1007/s00208-006-0043-5
  2. Cao, X., 10.1090/S0002-9939-08-09533-6, Proc. Am. Math. Soc. 136 (2008), 4075-4078. (2008) Zbl1166.58007MR2425749DOI10.1090/S0002-9939-08-09533-6
  3. Chow, B., Lu, P., Ni, L., 10.1090/gsm/077, Graduate Studies in Mathematics 77. American Mathematical Society, Providence (2006). (2006) Zbl1118.53001MR2274812DOI10.1090/gsm/077
  4. Fang, S., Xu, H., Zhu, P., 10.1007/s11425-014-4943-7, Sci. China, Math. 58 (2015), 1737-1744. (2015) Zbl1327.53084MR3368179DOI10.1007/s11425-014-4943-7
  5. Fang, S., Yang, F., 10.4134/BKMS.b150530, Bull. Korean Math. Soc. 53 (2016), 1113-1122. (2016) Zbl1350.53051MR3534307DOI10.4134/BKMS.b150530
  6. Fang, S., Yang, F., Zhu, P., 10.1017/S0017089516000537, Glasg. Math. J. 59 (2017), 743-751. (2017) Zbl1408.53088MR3682011DOI10.1017/S0017089516000537
  7. Guo, H., Philipowski, R., Thalmaier, A., 10.2140/pjm.2013.264.61, Pac. J. Math. 264 (2013), 61-81. (2013) Zbl1275.53058MR3079761DOI10.2140/pjm.2013.264.61
  8. Ho, P. T., 10.1007/s10455-018-9608-2, Ann. Glob. Anal. Geom. 54 (2018), 449-472. (2018) Zbl1412.53092MR3878837DOI10.1007/s10455-018-9608-2
  9. Kleiner, B., Lott, J., 10.2140/gt.2008.12.2587, Geom. Topol. 12 (2008), 2587-2858. (2008) Zbl1204.53033MR2460872DOI10.2140/gt.2008.12.2587
  10. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, Available at https://arxiv.org/abs/math/0211159 (2002), 39 pages. (2002) Zbl1130.53001
  11. Reed, M., Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York (1978). (1978) Zbl0401.47001MR0493421
  12. Topping, P., 10.1017/CBO9780511721465, London Mathematical Society Lecture Note Series 325. Cambridge University Press, Cambridge (2006). (2006) Zbl1105.58013MR2265040DOI10.1017/CBO9780511721465
  13. Zhao, L., The first eigenvalue of the Laplace operator under Yamabe flow, Math. Appl. 24 (2011), 274-278. (2011) MR2816261
  14. Zhao, L., 10.1007/s00025-012-0242-1, Result. Math. 63 (2013), 937-948. (2013) Zbl1270.53089MR3057347DOI10.1007/s00025-012-0242-1
  15. Zhao, L., 10.1002/mma.2835, Math. Methods Appl. Sci. 37 (2014), 744-751. (2014) Zbl1288.53068MR3180635DOI10.1002/mma.2835

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.