The inverse problem in the calculus of variations: new developments

Thoan Do; Geoff Prince

Communications in Mathematics (2021)

  • Issue: 1, page 131-149
  • ISSN: 1804-1388

Abstract

top
We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of n second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas’s famous solution for n = 2 . We then examine a new class of solutions in arbitrary dimension n and give some non-trivial examples in dimension 3.

How to cite

top

Do, Thoan, and Prince, Geoff. "The inverse problem in the calculus of variations: new developments." Communications in Mathematics (2021): 131-149. <http://eudml.org/doc/297545>.

@article{Do2021,
abstract = {We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas’s famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.},
author = {Do, Thoan, Prince, Geoff},
journal = {Communications in Mathematics},
keywords = {Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system},
language = {eng},
number = {1},
pages = {131-149},
publisher = {University of Ostrava},
title = {The inverse problem in the calculus of variations: new developments},
url = {http://eudml.org/doc/297545},
year = {2021},
}

TY - JOUR
AU - Do, Thoan
AU - Prince, Geoff
TI - The inverse problem in the calculus of variations: new developments
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 131
EP - 149
AB - We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas’s famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.
LA - eng
KW - Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system
UR - http://eudml.org/doc/297545
ER -

References

top
  1. Aldridge, J.E., Aspects of the Inverse Problem in the Calculus of Variations, 2003, La Trobe University, Australia, (2003) 
  2. Aldridge, J.E., Prince, G. E., Sarlet, W., Thompson, G., 10.1063/1.2358000, J. Math. Phys., 47, 2006, (2006) MR2268874DOI10.1063/1.2358000
  3. Anderson, I., Thompson, G., 10.1090/memo/0473, Memoirs Amer. Math. Soc., 98, 473, 1992, (1992) Zbl0760.49021MR1115829DOI10.1090/memo/0473
  4. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A., Exterior Differential Systems, 1991, Springer, (1991) MR1083148
  5. Crampin, M., Martínez, E., Sarlet, W., Linear connections for systems of second--order ordinary differential equations, Ann. Inst. H. Poincaré Phys. Théor., 65, 1996, 223-249, (1996) MR1411267
  6. Crampin, M., Prince, G.E., Sarlet, W., Thompson, G., 10.1023/A:1006238108507, Acta Appl. Math., 57, 1999, 239-254, (1999) MR1722045DOI10.1023/A:1006238108507
  7. Crampin, M., Prince, G.E., Thompson, G., 10.1088/0305-4470/17/7/011, J. Phys. A: Math. Gen., 17, 1984, 1437-1447, (1984) MR0748776DOI10.1088/0305-4470/17/7/011
  8. Crampin, M., Sarlet, W., Martínez, E., Byrnes, G.B., Prince, G.E., 10.1088/0266-5611/10/2/005, Inverse Problems, 10, 1994, 245-260, (1994) MR1269007DOI10.1088/0266-5611/10/2/005
  9. Do., T., The Inverse Problem in the Calculus of Variations via Exterior Differential Systems, 2016, La Trobe University, Australia, (2016) MR0879421
  10. Do, T., Prince, G.E., 10.1016/j.difgeo.2016.01.005, Diff. Geom. Appl., 45, 2016, 148-179, (2016) MR3457392DOI10.1016/j.difgeo.2016.01.005
  11. Douglas, J., 10.1090/S0002-9947-1941-0004740-5, Trans. Am. Math. Soc., 50, 1941, 71-128, (1941) Zbl0025.18102MR0004740DOI10.1090/S0002-9947-1941-0004740-5
  12. Helmholtz, H., Über der physikalische Bedeutung des Princips der kleinsten Wirkung, J. Reine Angew. Math., 100, 1887, 137-166, (1887) MR1580086
  13. Henneaux, M., 10.1088/0305-4470/15/3/002, J. Phys. A: Math. Gen., 15, 1982, L93-L96, (1982) MR0653398DOI10.1088/0305-4470/15/3/002
  14. Henneaux, M., Shepley, L. C., 10.1063/1.525252, J. Math. Phys., 23, 1988, 2101-2107, (1988) MR0680007DOI10.1063/1.525252
  15. Hirsch, A., 10.1007/BF01448077, Math. Ann., 50, 1898, 429-441, (1898) MR1511006DOI10.1007/BF01448077
  16. Jerie, M., Prince, G.E., 10.1016/S0393-0440(02)00030-X, J. Geom. Phys., 43, 2002, 351-370, (2002) MR1929913DOI10.1016/S0393-0440(02)00030-X
  17. Krupková, O., Prince, G.E., Second order ordinary differential equation in jet bundles, the inverse problem of the calculus of variation, 2008, in: HandBook of Global Analysis, Elsevier, (2008) MR2389647
  18. Massa, E., Pagani, E., Jet bundle geometry, dynamical connections,, the inverse problem of Lagrangian mechanics, Ann. Inst. Henri Poincaré, Phys. Theor., 61, 1994, 17-62, (1994) MR1303184
  19. Morandi, G., Ferrario, C., Vecchio, G. Lo, Marmo, G., Rubano, C., 10.1016/0370-1573(90)90137-Q, Phys. Rep., 188, 1990, 147-284, (1990) MR1050526DOI10.1016/0370-1573(90)90137-Q
  20. Sarlet, W., 10.1088/0305-4470/15/5/013, J. Phys. A: Math. Gen., 15, 1982, 1503-1517, (1982) Zbl0537.70018MR0656831DOI10.1088/0305-4470/15/5/013
  21. Sarlet, W., Crampin, M., Martínez, E., 10.1023/A:1006102121371, Acta Appl. Math., 54, 1998, 233-273, (1998) MR1671779DOI10.1023/A:1006102121371
  22. Sarlet, W., Thompson, G., Prince, G.E., 10.1090/S0002-9947-02-02994-X, Trans. Amer. Math. Soc., 354, 2002, 2897-2919, (2002) MR1895208DOI10.1090/S0002-9947-02-02994-X
  23. Sonin, N. Ya., On the definition of maximal, minimal properties, Warsaw Univ. Izvestiya, 1--2, 1886, 1-68, (1886) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.