The inverse problem in the calculus of variations: new developments
Communications in Mathematics (2021)
- Issue: 1, page 131-149
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topDo, Thoan, and Prince, Geoff. "The inverse problem in the calculus of variations: new developments." Communications in Mathematics (2021): 131-149. <http://eudml.org/doc/297545>.
@article{Do2021,
abstract = {We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas’s famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.},
author = {Do, Thoan, Prince, Geoff},
journal = {Communications in Mathematics},
keywords = {Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system},
language = {eng},
number = {1},
pages = {131-149},
publisher = {University of Ostrava},
title = {The inverse problem in the calculus of variations: new developments},
url = {http://eudml.org/doc/297545},
year = {2021},
}
TY - JOUR
AU - Do, Thoan
AU - Prince, Geoff
TI - The inverse problem in the calculus of variations: new developments
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 131
EP - 149
AB - We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas’s famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.
LA - eng
KW - Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system
UR - http://eudml.org/doc/297545
ER -
References
top- Aldridge, J.E., Aspects of the Inverse Problem in the Calculus of Variations, 2003, La Trobe University, Australia, (2003)
- Aldridge, J.E., Prince, G. E., Sarlet, W., Thompson, G., 10.1063/1.2358000, J. Math. Phys., 47, 2006, (2006) MR2268874DOI10.1063/1.2358000
- Anderson, I., Thompson, G., 10.1090/memo/0473, Memoirs Amer. Math. Soc., 98, 473, 1992, (1992) Zbl0760.49021MR1115829DOI10.1090/memo/0473
- Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A., Exterior Differential Systems, 1991, Springer, (1991) MR1083148
- Crampin, M., Martínez, E., Sarlet, W., Linear connections for systems of second--order ordinary differential equations, Ann. Inst. H. Poincaré Phys. Théor., 65, 1996, 223-249, (1996) MR1411267
- Crampin, M., Prince, G.E., Sarlet, W., Thompson, G., 10.1023/A:1006238108507, Acta Appl. Math., 57, 1999, 239-254, (1999) MR1722045DOI10.1023/A:1006238108507
- Crampin, M., Prince, G.E., Thompson, G., 10.1088/0305-4470/17/7/011, J. Phys. A: Math. Gen., 17, 1984, 1437-1447, (1984) MR0748776DOI10.1088/0305-4470/17/7/011
- Crampin, M., Sarlet, W., Martínez, E., Byrnes, G.B., Prince, G.E., 10.1088/0266-5611/10/2/005, Inverse Problems, 10, 1994, 245-260, (1994) MR1269007DOI10.1088/0266-5611/10/2/005
- Do., T., The Inverse Problem in the Calculus of Variations via Exterior Differential Systems, 2016, La Trobe University, Australia, (2016) MR0879421
- Do, T., Prince, G.E., 10.1016/j.difgeo.2016.01.005, Diff. Geom. Appl., 45, 2016, 148-179, (2016) MR3457392DOI10.1016/j.difgeo.2016.01.005
- Douglas, J., 10.1090/S0002-9947-1941-0004740-5, Trans. Am. Math. Soc., 50, 1941, 71-128, (1941) Zbl0025.18102MR0004740DOI10.1090/S0002-9947-1941-0004740-5
- Helmholtz, H., Über der physikalische Bedeutung des Princips der kleinsten Wirkung, J. Reine Angew. Math., 100, 1887, 137-166, (1887) MR1580086
- Henneaux, M., 10.1088/0305-4470/15/3/002, J. Phys. A: Math. Gen., 15, 1982, L93-L96, (1982) MR0653398DOI10.1088/0305-4470/15/3/002
- Henneaux, M., Shepley, L. C., 10.1063/1.525252, J. Math. Phys., 23, 1988, 2101-2107, (1988) MR0680007DOI10.1063/1.525252
- Hirsch, A., 10.1007/BF01448077, Math. Ann., 50, 1898, 429-441, (1898) MR1511006DOI10.1007/BF01448077
- Jerie, M., Prince, G.E., 10.1016/S0393-0440(02)00030-X, J. Geom. Phys., 43, 2002, 351-370, (2002) MR1929913DOI10.1016/S0393-0440(02)00030-X
- Krupková, O., Prince, G.E., Second order ordinary differential equation in jet bundles, the inverse problem of the calculus of variation, 2008, in: HandBook of Global Analysis, Elsevier, (2008) MR2389647
- Massa, E., Pagani, E., Jet bundle geometry, dynamical connections,, the inverse problem of Lagrangian mechanics, Ann. Inst. Henri Poincaré, Phys. Theor., 61, 1994, 17-62, (1994) MR1303184
- Morandi, G., Ferrario, C., Vecchio, G. Lo, Marmo, G., Rubano, C., 10.1016/0370-1573(90)90137-Q, Phys. Rep., 188, 1990, 147-284, (1990) MR1050526DOI10.1016/0370-1573(90)90137-Q
- Sarlet, W., 10.1088/0305-4470/15/5/013, J. Phys. A: Math. Gen., 15, 1982, 1503-1517, (1982) Zbl0537.70018MR0656831DOI10.1088/0305-4470/15/5/013
- Sarlet, W., Crampin, M., Martínez, E., 10.1023/A:1006102121371, Acta Appl. Math., 54, 1998, 233-273, (1998) MR1671779DOI10.1023/A:1006102121371
- Sarlet, W., Thompson, G., Prince, G.E., 10.1090/S0002-9947-02-02994-X, Trans. Amer. Math. Soc., 354, 2002, 2897-2919, (2002) MR1895208DOI10.1090/S0002-9947-02-02994-X
- Sonin, N. Ya., On the definition of maximal, minimal properties, Warsaw Univ. Izvestiya, 1--2, 1886, 1-68, (1886)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.