A note on the solvability of homogeneous Riemann boundary problem with infinity index

Juan Bory-Reyes

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 527-534
  • ISSN: 1804-1388

Abstract

top
In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.

How to cite

top

Bory-Reyes, Juan. "A note on the solvability of homogeneous Riemann boundary problem with infinity index." Communications in Mathematics 29.3 (2021): 527-534. <http://eudml.org/doc/297556>.

@article{Bory2021,
abstract = {In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.},
author = {Bory-Reyes, Juan},
journal = {Communications in Mathematics},
keywords = {Riemann boundary value problem; Phragmèn Lindelöf principle},
language = {eng},
number = {3},
pages = {527-534},
publisher = {University of Ostrava},
title = {A note on the solvability of homogeneous Riemann boundary problem with infinity index},
url = {http://eudml.org/doc/297556},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Bory-Reyes, Juan
TI - A note on the solvability of homogeneous Riemann boundary problem with infinity index
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 527
EP - 534
AB - In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.
LA - eng
KW - Riemann boundary value problem; Phragmèn Lindelöf principle
UR - http://eudml.org/doc/297556
ER -

References

top
  1. Gakhov, F.D., Boundary value problems. Transl. from the Russian. Reprint of the 1966 translation. (English), 1990, Dover Publications, Inc., New York, (1990) 
  2. Lu, J.-K., Boundary value problems for analytic functions (English), 1993, World Scientific, Singapore, Series in Pure Mathematics 16. (1993) 
  3. Peña, D.P., Reyes, J.B., Riemann boundary value problem on a regular open curve, J. Nat. Geom., 22, 1-2, 2002, 1-18, (2002) MR1906672
  4. Seĭfullaev, R.K., Solvability of a homogeneous Riemann boundary value problem on an open curve. (Russian), Theory of functions and approximations (Saratov, 1982), 2, 1983, 140-143, Saratov. Gos. Univ., Saratov, 1983, (1983) 
  5. Seĭfullaev, R.K., A Riemann boundary value problem on a nonsmooth open curve. (Russian), Mat. Sb. (N. S.), 112 (154), 2 (6), 1980, 147-161, (1980) 
  6. Seĭfullaev, R.K., Relationship of the number of linearly independent solutions of a Riemann boundary value problem to properties of the jump curve. (Russian), Gos. Univ. Uchen. Zap., 6, 1978, 14-20, (1978) 
  7. Kutlu, K., On characteristic adjoint singular integral equation of Riemann boundary value problem, An. Univ. Timişoara Ser. Mat.-Inform., 41, 1, 2003, 125-129, (2003) MR2245917
  8. Kutlu, K., On Riemann boundary value problem, An. Univ. Timişoara Ser. Mat.-Inform., 38, 1, 2000, 89-96, (2000) 
  9. Kutlu, K., On Riemann boundary value problem, J. Indian Acad. Math., 21, 2, 1999, 181-191, (1999) 
  10. Diéguez, B. González, Reyes, J. Bory, The homogeneous Riemann boundary value problem on rectifiable open Jordan curves. (Spanish), Cienc. Mat. (Havana), 9, 2, 1988, 3-9, (1988) 
  11. Reyes, J. Bory, González-Diéguez, B., On the classical formulation of solvability of the Riemann boundary value problem. (Spanish), Cienc. Mat. (Havana), 10, 1, 1989, 65-73, (1989) 
  12. Reyes, J. Bory, On the Riemann boundary problem on open rectifiable Jordan curves. (Spanish), Cienc. Mat. (Havana), 11, 3, 1990, 211-220, (1990) 
  13. Danilov, E.A., Dependence of the number of solutions of a homogeneous Riemann problem on the contour and the coefficient module. (Russian), Dokl. Akad. Nauk SSSR, 264, 6, 1982, 1305-1308, (1982) 
  14. Salim, M.S., Necessary and sufficient conditions for continuity of an integral of Cauchy type up to the boundary along a nonsmooth open curve. (Russian), Scientific reports. Mathematics and physics series, 3, 1979, 75-83, (1979) 
  15. Selim, M.S., The homogeneous Riemann problem on a nonsmooth open curve. (Russian), Scientific reports. Mathematics and physics series, 5, 1979, 122–22, (1979) 
  16. Phragmèn, E., 10.1007/BF02418391, Acta Math., 28, 1, 1904, 351-368, (1904) DOI10.1007/BF02418391
  17. Phragmèn, E., Lindelöf, E., 10.1007/BF02415450, Acta Math., 31, 1, 1908, 381-406, (1908) DOI10.1007/BF02415450
  18. Heins, M., On the Phragmèn-Lindelöf principle, Trans. Amer. Math. Soc., 60, 1946, 238-244, (1946) 
  19. Ahlfors, L.V., On Phragmèn-Lindelöf's principle, Trans. Amer. Math. Soc., 41, 1, 1937, 1-8, (1937) 
  20. Govorov, N.V., Riemann's boundary problem with infinite index, 1994, Birkhäuser Verlag, Basel, Edited and with an introduction and an appendix by I. V. Ostrovskii. Translated from the 1986 Russian original by Yu.I. Lyubarskii.. (1994) 
  21. Alekhno, A.G., On the solvability of the homogeneous Riemann boundary value problem with an infinite index. (Russian), Dokl. Akad. Nauk Belarusi, 41, 2, 1997, 37-44, (1997) 
  22. Alekhno, A.G., Sufficient conditions for solvability of homogeneous Riemann boundary value problem with infinite index (Russian), Tr. N. I. Lobachevskii Mat. Center, 14, 2002, 71-77, (2002) MR1952217
  23. Alekhno, A.G., Sevruk, A.B., The homogeneous Riemann boundary value problem with an infinite index of Boutroux refined order, Dokl. Nats. Akad. Nauk Belarusi, 55, 6, 2011, 5-10, (2011) MR2963469
  24. Ostrovski, I.V., The homogeneous Riemann boundary value problem with an infinite index on a curvilinear contour. I. (Russian), Teor. Funktsi. Funktsional. Anal. i Prilozhen., 56, 1991, 95-105, Translation in J. Math. Sci. 76 (4) (1995), 2517--2524.. (1991) 
  25. Ostrovski, I.V., The homogeneous Riemann boundary value problem with an infinite index on a curvilinear contour. II. (Russian), Teor. Funktsi. Funktsional. Anal. i Prilozhen., 52, 1992, 3-17, Translation in J. Math. Sci. 77 (1) (1995), 2917--2928.. (1992) 
  26. Plaksa, S.A., Riemann boundary problem with index plus-infinity on a rectifiable curve (English. Russian original), Ukr. Math. J., 42, 9, 1990, 1070-1077, Translation from Ukr. Mat. Zh. 42 (9) (1990) 1204--1213.. (1990) 
  27. Salimov, R.B., On a new approach to solving the Riemann boundary value problem with a condition on the ray in the case of an infinite index (Russian), Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 16, 1, 2016, 20-33, (2016) MR3501501
  28. Salimov, R.B., Suleĭmanov, A.Z., 10.3103/S1066369X17050085, Russian Math. (Iz. VUZ), 61, 5, 2017, 61-65, Translated from Izv. Vyssh. Uchebn. Zaved. Mat. 2017, no. 5, 71--76.. (2017) MR3752716DOI10.3103/S1066369X17050085
  29. Tolochko, M.E., On Solvability of Homogeneous Rieman Boundary Value Problem with Infinite Index for a Half-Plane (Russian), Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, 5, 1972, 34-41, (1972) 
  30. Sandrygailo, I.E., The Riemann Boundary Value Problem with Infinite Index for a Half-Plane (Russian), Dokl. AN BSSR, 19, 10, 1975, 872-875, (1975) 
  31. Salimov, R.B., Gorskaya, T.Yu., Solution of homogeneous Riemann boundary value problem with a condition on a real axis and an infinite index of logarithmic order with the new method (Russian), Meždunar. Nauč.-Issled. Žurn., 7, 85, 2019, 6-15, (2019) 
  32. Grudskiĭ, S.M., Singular integral equations and the Riemann boundary value problem with an infinite index in the space L 0 ( Γ , ω ) (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 49, 1, 1985, 55-80, (1985) 
  33. Fatykhov, A.Kh., Shabalin, P.L., 10.15393/j3.art.2018.5530, Probl. Anal. Issues Anal., 7, 25, 2018, 31-39, Special Issue.. (2018) MR3866050DOI10.15393/j3.art.2018.5530
  34. Privalov, I.I., Graničnye svoístva analitičeskih funkcií. (Russian) (Boundary properties of analytic functions), 2nd ed, 1950, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, (1950) 
  35. Painlevé, P., Sur les lignes singulières des fonctions analytiques (French), Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 2, 1888, B1-B130, (1888) 
  36. Evgrafov, M.A., Analytic functions. (Russian) 2nd ed, 1968, Nauka (Moscow), (1968) 
  37. Levin, B.Ya., Distribution of zeros of entire functions, 1980, American Mathematical Society, Providence, R.I., Translated from the Russian by R.P. Boas, J.M. Danskin, F.M. Goodspeed, J. Korevaar, A.L. Shields and H.P. Thielman. Revised edition. Translations of Mathematical Monographs, 5.. (1980) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.