On a deformed version of the two-disk dynamo system

Cristian Lăzureanu; Camelia Petrişor; Ciprian Hedrea

Applications of Mathematics (2021)

  • Volume: 66, Issue: 3, page 345-372
  • ISSN: 0862-7940

Abstract

top
We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping ℰ𝒞 associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of ℰ𝒞 is a convex proper subset of 2 . In order to point out new connections, we choose deformation functions such that Im ( ℰ𝒞 ) = 2 . Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.

How to cite

top

Lăzureanu, Cristian, Petrişor, Camelia, and Hedrea, Ciprian. "On a deformed version of the two-disk dynamo system." Applications of Mathematics 66.3 (2021): 345-372. <http://eudml.org/doc/297592>.

@article{Lăzureanu2021,
abstract = {We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping $\mathcal \{EC\}$ associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of $\mathcal \{EC\}$ is a convex proper subset of $\mathbb \{R\}^2$. In order to point out new connections, we choose deformation functions such that Im$(\mathcal \{EC\})=\mathbb \{R\}^2.$ Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.},
author = {Lăzureanu, Cristian, Petrişor, Camelia, Hedrea, Ciprian},
journal = {Applications of Mathematics},
keywords = {integrable deformation; Hamilton-Poisson system; stability; energy-Casimir mapping; periodic orbit; heteroclinic orbit; mid-point rule},
language = {eng},
number = {3},
pages = {345-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a deformed version of the two-disk dynamo system},
url = {http://eudml.org/doc/297592},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Lăzureanu, Cristian
AU - Petrişor, Camelia
AU - Hedrea, Ciprian
TI - On a deformed version of the two-disk dynamo system
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 345
EP - 372
AB - We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping $\mathcal {EC}$ associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of $\mathcal {EC}$ is a convex proper subset of $\mathbb {R}^2$. In order to point out new connections, we choose deformation functions such that Im$(\mathcal {EC})=\mathbb {R}^2.$ Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.
LA - eng
KW - integrable deformation; Hamilton-Poisson system; stability; energy-Casimir mapping; periodic orbit; heteroclinic orbit; mid-point rule
UR - http://eudml.org/doc/297592
ER -

References

top
  1. Adams, R. M., Biggs, R., Holderbaum, W., Remsing, C. C., On the stability and integration of Hamilton-Poisson systems on 𝔰 𝔬 ( 3 ) - * , Rend. Mat. Appl., VII. Ser. 37 (2016), 1-42. (2016) Zbl1416.17022MR3622303
  2. Arnol'd, V. I., 10.1007/978-3-642-31031-7_4, Sov. Math., Dokl. 6 (1965), 773-777 translation from Dokl. Akad. Nauk SSSR 162 1965 975-978. (1965) Zbl0141.43901MR0180051DOI10.1007/978-3-642-31031-7_4
  3. Austin, M. A., Krishnaprasad, P. S., Wang, L.-S., 10.1006/jcph.1993.1128, J. Comput. Phys. 107 (1993), 105-117. (1993) Zbl0782.70001MR1226376DOI10.1006/jcph.1993.1128
  4. Ballesteros, Á., Blasco, A., Musso, F., 10.1016/j.jde.2016.02.014, J. Differ. Equations 260 (2016), 8207-8228. (2016) Zbl1382.37057MR3479208DOI10.1016/j.jde.2016.02.014
  5. Barrett, D. I., Biggs, R., Remsing, C. C., 10.1007/s10440-017-0140-3, Acta Appl. Math. 154 (2018), 189-230. (2018) Zbl1411.53069MR3770248DOI10.1007/s10440-017-0140-3
  6. Bînzar, T., Lăzureanu, C., 10.3934/dcdsb.2013.18.1755, Discrete Contin. Dyn. Syst, Ser. B. 18 (2013), 1755-1776. (2013) Zbl1391.70049MR3066320DOI10.3934/dcdsb.2013.18.1755
  7. Bînzar, T., Lăzureanu, C., 10.1016/j.geomphys.2013.03.016, J. Geom. Phys. 70 (2013), 1-8. (2013) Zbl1332.70026MR3054279DOI10.1016/j.geomphys.2013.03.016
  8. Bolsinov, A. V., Borisov, A. V., 10.1023/A:1019856702638, Math. Notes 72 (2002), 10-30 translation from Mat. Zametki 72 2002 11-34. (2002) Zbl1042.37041MR1942578DOI10.1023/A:1019856702638
  9. Chillingworth, D. R. J., Holmes, P. J., 10.1007/BF01039903, J. Internat. Assoc. Math. Geol. 12 (1980), 41-59. (1980) MR0594011DOI10.1007/BF01039903
  10. Cook, A. E., Roberts, P. H., 10.1017/S0305004100046338, Proc. Camb. Philos. Soc. 68 (1970), 547-569. (1970) DOI10.1017/S0305004100046338
  11. Dirac, P. A. M., The Principles of Quantum Mechanics, Oxford University Press, Oxford (1947). (1947) Zbl0030.04801MR0023198
  12. Evripidou, C. A., Kassotakis, P., Vanhaecke, P., 10.1134/S1560354717060090, Regul. Chaotic Dyn. 22 (2017), 721-739. (2017) Zbl06845459MR3736470DOI10.1134/S1560354717060090
  13. Galajinsky, A., 10.1016/j.jmaa.2014.03.008, J. Math. Anal. Appl. 416 (2014), 995-997. (2014) Zbl1362.70006MR3188751DOI10.1016/j.jmaa.2014.03.008
  14. Glatzmaier, G. A., Roberts, P. H., 10.1038/377203a0, Nature 377 (1995), 203-209. (1995) DOI10.1038/377203a0
  15. Hardy, Y., Steeb, W.-H., 10.1023/A:1026640221874, Int. J. Theor. Phys. 38 (1999), 2413-2417. (1999) Zbl0980.86005MR1722023DOI10.1023/A:1026640221874
  16. Holm, D. D., Marsden, J. E., 10.1007/978-1-4757-2140-9_9, Symplectic Geometry and Mathematical Physics Birkhäuser, Boston (1991), 189-203. (1991) Zbl0744.70011MR1156540DOI10.1007/978-1-4757-2140-9_9
  17. Huang, K., Shi, S., Xu, Z., 10.1142/S0219887819500592, Int. J. Geom. Methods Mod. Phys. 16 (2019), Article ID 1950059, 17 pages. (2019) Zbl1421.37026MR3940519DOI10.1142/S0219887819500592
  18. Ito, K., 10.1016/0012-821X(80)90224-1, Earth Planet. Sci. Lett. 51 (1980), 451-456. (1980) DOI10.1016/0012-821X(80)90224-1
  19. Ivan, M., Ivan, G., On the fractional Euler top system with two parameters, Int. J. Modern Eng. Research 8 (2018), 10-22. (2018) 
  20. Jian, X., 10.5897/IJPS11.221, Int. J. Phys. Sci. 6 (2011), 2478-2482. (2011) DOI10.5897/IJPS11.221
  21. Kostant, B., 10.1007/BFb0079068, Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 87-208. (1970) Zbl0223.53028MR0294568DOI10.1007/BFb0079068
  22. Lăzureanu, C., 10.1155/2017/4596951, Adv. Math. Phys. 2017 (2017), Article ID 4596951, 9 pages. (2017) Zbl1401.37063MR3696014DOI10.1155/2017/4596951
  23. Lăzureanu, C., 10.1007/s11040-017-9251-3, Math. Phys. Anal. Geom. 20 (2017), Article ID 20, 22 pages. (2017) Zbl1413.37043MR3683715DOI10.1007/s11040-017-9251-3
  24. Lăzureanu, C., 10.1016/j.crma.2017.04.002, C. R., Math., Acad. Sci. Paris 355 (2017), 596-600. (2017) Zbl1366.37125MR3650389DOI10.1016/j.crma.2017.04.002
  25. Lăzureanu, C., 10.1142/S0218127418500669, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28 (2018), Article ID 1850066, 7 pages. (2018) Zbl1392.34039MR3807430DOI10.1142/S0218127418500669
  26. Lăzureanu, C., Bînzar, T., 10.1142/S0218127412502744, Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250274, 14 pages. (2012) Zbl1258.34100MR3006345DOI10.1142/S0218127412502744
  27. Lăzureanu, C., Bînzar, T., 10.1016/j.crma.2012.04.016, C. R., Math., Acad. Sci. Paris 350 (2012), 529-533. (2012) Zbl1253.34041MR2929062DOI10.1016/j.crma.2012.04.016
  28. Lăzureanu, C., Petrişor, C., 10.1155/2018/5398768, Adv. Math. Phys. 2018 (2018), Article ID 5398768, 9 pages. (2018) Zbl1419.37056MR3816095DOI10.1155/2018/5398768
  29. Libermann, P., Marle, C.-M., 10.1007/978-94-009-3807-6, Mathematics and Its Applications 35. D. Reidel, Dordrecht (1987). (1987) Zbl0643.53002MR0882548DOI10.1007/978-94-009-3807-6
  30. Llibre, J., Zhang, X., 10.1088/0305-4470/33/42/310, J. Phys. A, Math. Gen. 33 (2000), 7613-7635. (2000) Zbl0967.34002MR1802113DOI10.1088/0305-4470/33/42/310
  31. McLachlan, R. I., 10.1137/0916010, SIAM J. Sci. Comput. 16 (1995), 151-168. (1995) Zbl0821.65048MR1311683DOI10.1137/0916010
  32. McMillen, T., The shape and dynamics of the Rikitake attractor, Nonlinear J. 1 (1999), 1-10. (1999) 
  33. Moser, J., 10.1002/cpa.3160290613, Commun. Pure Appl. Math. 29 (1976), 727-747. (1976) Zbl0346.34024MR0426052DOI10.1002/cpa.3160290613
  34. Pehlivan, I., Uyaroglu, Y., 10.3923/jas.2007.232.236, J. Appl. Sci. 7 (2007), 232-236. (2007) DOI10.3923/jas.2007.232.236
  35. Puta, M., 10.1007/978-94-011-1992-4, Mathematics and Its Applications (Dordrecht) 260. Kluwer Academic, Dordrecht (1993). (1993) Zbl0795.70001MR1247960DOI10.1007/978-94-011-1992-4
  36. Puta, M., 10.1142/S0218127499000390, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 (1999), 555-559. (1999) Zbl0970.37063MR1702129DOI10.1142/S0218127499000390
  37. Rikitake, T., 10.1017/S0305004100033223, Proc. Camb. Philos. Soc. 54 (1958), 89-105. (1958) Zbl0087.23703MR0092682DOI10.1017/S0305004100033223
  38. Tudoran, R. M., Aron, A., Nicoară, Ş., 10.1137/080728822, SIAM J. Appl. Dyn. Sys. 8 (2009), 454-479. (2009) Zbl1159.70356MR2496764DOI10.1137/080728822
  39. Tudoran, R. M., Gîrban, A., 10.1016/j.nonrwa.2012.01.025, Nonlinear Anal., Real World Appl. 13 (2012), 2304-2312. (2012) Zbl1257.34037MR2911917DOI10.1016/j.nonrwa.2012.01.025
  40. Turcotte, D. L., 10.1017/CBO9781139174695, Cambridge University Press, Cambridge (1997). (1997) Zbl0785.58005MR1458893DOI10.1017/CBO9781139174695
  41. Valls, C., 10.1017/S030821050000439X, Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), 1309-1326. (2005) Zbl1098.34028MR2191901DOI10.1017/S030821050000439X
  42. Balasubramaniam, V. Vembarasan P., 10.1007/s11071-013-0946-0, Nonlinear Dyn. 74 (2013), 31-44. (2013) Zbl1281.34097MR3105173DOI10.1007/s11071-013-0946-0
  43. Vincent, U. E., 10.1016/j.physleta.2005.06.003, Phys. Lett., A 343 (2005), 133-138. (2005) Zbl1194.34091DOI10.1016/j.physleta.2005.06.003
  44. Wei, Z., Zhang, W., Wang, Z., Yao, M., 10.1142/S0218127415500285, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550028, 11 pages. (2015) Zbl1309.34009MR3316322DOI10.1142/S0218127415500285
  45. Wei, Z., Zhu, B., Yang, J., Perc, M., Slavinec, M., 10.1016/j.amc.2018.10.090, Appl. Math. Comput. 347 (2019), 265-281. (2019) Zbl1428.34055MR3880151DOI10.1016/j.amc.2018.10.090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.