On a deformed version of the two-disk dynamo system
Cristian Lăzureanu; Camelia Petrişor; Ciprian Hedrea
Applications of Mathematics (2021)
- Volume: 66, Issue: 3, page 345-372
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLăzureanu, Cristian, Petrişor, Camelia, and Hedrea, Ciprian. "On a deformed version of the two-disk dynamo system." Applications of Mathematics 66.3 (2021): 345-372. <http://eudml.org/doc/297592>.
@article{Lăzureanu2021,
abstract = {We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping $\mathcal \{EC\}$ associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of $\mathcal \{EC\}$ is a convex proper subset of $\mathbb \{R\}^2$. In order to point out new connections, we choose deformation functions such that Im$(\mathcal \{EC\})=\mathbb \{R\}^2.$ Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.},
author = {Lăzureanu, Cristian, Petrişor, Camelia, Hedrea, Ciprian},
journal = {Applications of Mathematics},
keywords = {integrable deformation; Hamilton-Poisson system; stability; energy-Casimir mapping; periodic orbit; heteroclinic orbit; mid-point rule},
language = {eng},
number = {3},
pages = {345-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a deformed version of the two-disk dynamo system},
url = {http://eudml.org/doc/297592},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Lăzureanu, Cristian
AU - Petrişor, Camelia
AU - Hedrea, Ciprian
TI - On a deformed version of the two-disk dynamo system
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 345
EP - 372
AB - We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping $\mathcal {EC}$ associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of $\mathcal {EC}$ is a convex proper subset of $\mathbb {R}^2$. In order to point out new connections, we choose deformation functions such that Im$(\mathcal {EC})=\mathbb {R}^2.$ Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system.
LA - eng
KW - integrable deformation; Hamilton-Poisson system; stability; energy-Casimir mapping; periodic orbit; heteroclinic orbit; mid-point rule
UR - http://eudml.org/doc/297592
ER -
References
top- Adams, R. M., Biggs, R., Holderbaum, W., Remsing, C. C., On the stability and integration of Hamilton-Poisson systems on , Rend. Mat. Appl., VII. Ser. 37 (2016), 1-42. (2016) Zbl1416.17022MR3622303
- Arnol'd, V. I., 10.1007/978-3-642-31031-7_4, Sov. Math., Dokl. 6 (1965), 773-777 translation from Dokl. Akad. Nauk SSSR 162 1965 975-978. (1965) Zbl0141.43901MR0180051DOI10.1007/978-3-642-31031-7_4
- Austin, M. A., Krishnaprasad, P. S., Wang, L.-S., 10.1006/jcph.1993.1128, J. Comput. Phys. 107 (1993), 105-117. (1993) Zbl0782.70001MR1226376DOI10.1006/jcph.1993.1128
- Ballesteros, Á., Blasco, A., Musso, F., 10.1016/j.jde.2016.02.014, J. Differ. Equations 260 (2016), 8207-8228. (2016) Zbl1382.37057MR3479208DOI10.1016/j.jde.2016.02.014
- Barrett, D. I., Biggs, R., Remsing, C. C., 10.1007/s10440-017-0140-3, Acta Appl. Math. 154 (2018), 189-230. (2018) Zbl1411.53069MR3770248DOI10.1007/s10440-017-0140-3
- Bînzar, T., Lăzureanu, C., 10.3934/dcdsb.2013.18.1755, Discrete Contin. Dyn. Syst, Ser. B. 18 (2013), 1755-1776. (2013) Zbl1391.70049MR3066320DOI10.3934/dcdsb.2013.18.1755
- Bînzar, T., Lăzureanu, C., 10.1016/j.geomphys.2013.03.016, J. Geom. Phys. 70 (2013), 1-8. (2013) Zbl1332.70026MR3054279DOI10.1016/j.geomphys.2013.03.016
- Bolsinov, A. V., Borisov, A. V., 10.1023/A:1019856702638, Math. Notes 72 (2002), 10-30 translation from Mat. Zametki 72 2002 11-34. (2002) Zbl1042.37041MR1942578DOI10.1023/A:1019856702638
- Chillingworth, D. R. J., Holmes, P. J., 10.1007/BF01039903, J. Internat. Assoc. Math. Geol. 12 (1980), 41-59. (1980) MR0594011DOI10.1007/BF01039903
- Cook, A. E., Roberts, P. H., 10.1017/S0305004100046338, Proc. Camb. Philos. Soc. 68 (1970), 547-569. (1970) DOI10.1017/S0305004100046338
- Dirac, P. A. M., The Principles of Quantum Mechanics, Oxford University Press, Oxford (1947). (1947) Zbl0030.04801MR0023198
- Evripidou, C. A., Kassotakis, P., Vanhaecke, P., 10.1134/S1560354717060090, Regul. Chaotic Dyn. 22 (2017), 721-739. (2017) Zbl06845459MR3736470DOI10.1134/S1560354717060090
- Galajinsky, A., 10.1016/j.jmaa.2014.03.008, J. Math. Anal. Appl. 416 (2014), 995-997. (2014) Zbl1362.70006MR3188751DOI10.1016/j.jmaa.2014.03.008
- Glatzmaier, G. A., Roberts, P. H., 10.1038/377203a0, Nature 377 (1995), 203-209. (1995) DOI10.1038/377203a0
- Hardy, Y., Steeb, W.-H., 10.1023/A:1026640221874, Int. J. Theor. Phys. 38 (1999), 2413-2417. (1999) Zbl0980.86005MR1722023DOI10.1023/A:1026640221874
- Holm, D. D., Marsden, J. E., 10.1007/978-1-4757-2140-9_9, Symplectic Geometry and Mathematical Physics Birkhäuser, Boston (1991), 189-203. (1991) Zbl0744.70011MR1156540DOI10.1007/978-1-4757-2140-9_9
- Huang, K., Shi, S., Xu, Z., 10.1142/S0219887819500592, Int. J. Geom. Methods Mod. Phys. 16 (2019), Article ID 1950059, 17 pages. (2019) Zbl1421.37026MR3940519DOI10.1142/S0219887819500592
- Ito, K., 10.1016/0012-821X(80)90224-1, Earth Planet. Sci. Lett. 51 (1980), 451-456. (1980) DOI10.1016/0012-821X(80)90224-1
- Ivan, M., Ivan, G., On the fractional Euler top system with two parameters, Int. J. Modern Eng. Research 8 (2018), 10-22. (2018)
- Jian, X., 10.5897/IJPS11.221, Int. J. Phys. Sci. 6 (2011), 2478-2482. (2011) DOI10.5897/IJPS11.221
- Kostant, B., 10.1007/BFb0079068, Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 87-208. (1970) Zbl0223.53028MR0294568DOI10.1007/BFb0079068
- Lăzureanu, C., 10.1155/2017/4596951, Adv. Math. Phys. 2017 (2017), Article ID 4596951, 9 pages. (2017) Zbl1401.37063MR3696014DOI10.1155/2017/4596951
- Lăzureanu, C., 10.1007/s11040-017-9251-3, Math. Phys. Anal. Geom. 20 (2017), Article ID 20, 22 pages. (2017) Zbl1413.37043MR3683715DOI10.1007/s11040-017-9251-3
- Lăzureanu, C., 10.1016/j.crma.2017.04.002, C. R., Math., Acad. Sci. Paris 355 (2017), 596-600. (2017) Zbl1366.37125MR3650389DOI10.1016/j.crma.2017.04.002
- Lăzureanu, C., 10.1142/S0218127418500669, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28 (2018), Article ID 1850066, 7 pages. (2018) Zbl1392.34039MR3807430DOI10.1142/S0218127418500669
- Lăzureanu, C., Bînzar, T., 10.1142/S0218127412502744, Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250274, 14 pages. (2012) Zbl1258.34100MR3006345DOI10.1142/S0218127412502744
- Lăzureanu, C., Bînzar, T., 10.1016/j.crma.2012.04.016, C. R., Math., Acad. Sci. Paris 350 (2012), 529-533. (2012) Zbl1253.34041MR2929062DOI10.1016/j.crma.2012.04.016
- Lăzureanu, C., Petrişor, C., 10.1155/2018/5398768, Adv. Math. Phys. 2018 (2018), Article ID 5398768, 9 pages. (2018) Zbl1419.37056MR3816095DOI10.1155/2018/5398768
- Libermann, P., Marle, C.-M., 10.1007/978-94-009-3807-6, Mathematics and Its Applications 35. D. Reidel, Dordrecht (1987). (1987) Zbl0643.53002MR0882548DOI10.1007/978-94-009-3807-6
- Llibre, J., Zhang, X., 10.1088/0305-4470/33/42/310, J. Phys. A, Math. Gen. 33 (2000), 7613-7635. (2000) Zbl0967.34002MR1802113DOI10.1088/0305-4470/33/42/310
- McLachlan, R. I., 10.1137/0916010, SIAM J. Sci. Comput. 16 (1995), 151-168. (1995) Zbl0821.65048MR1311683DOI10.1137/0916010
- McMillen, T., The shape and dynamics of the Rikitake attractor, Nonlinear J. 1 (1999), 1-10. (1999)
- Moser, J., 10.1002/cpa.3160290613, Commun. Pure Appl. Math. 29 (1976), 727-747. (1976) Zbl0346.34024MR0426052DOI10.1002/cpa.3160290613
- Pehlivan, I., Uyaroglu, Y., 10.3923/jas.2007.232.236, J. Appl. Sci. 7 (2007), 232-236. (2007) DOI10.3923/jas.2007.232.236
- Puta, M., 10.1007/978-94-011-1992-4, Mathematics and Its Applications (Dordrecht) 260. Kluwer Academic, Dordrecht (1993). (1993) Zbl0795.70001MR1247960DOI10.1007/978-94-011-1992-4
- Puta, M., 10.1142/S0218127499000390, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 (1999), 555-559. (1999) Zbl0970.37063MR1702129DOI10.1142/S0218127499000390
- Rikitake, T., 10.1017/S0305004100033223, Proc. Camb. Philos. Soc. 54 (1958), 89-105. (1958) Zbl0087.23703MR0092682DOI10.1017/S0305004100033223
- Tudoran, R. M., Aron, A., Nicoară, Ş., 10.1137/080728822, SIAM J. Appl. Dyn. Sys. 8 (2009), 454-479. (2009) Zbl1159.70356MR2496764DOI10.1137/080728822
- Tudoran, R. M., Gîrban, A., 10.1016/j.nonrwa.2012.01.025, Nonlinear Anal., Real World Appl. 13 (2012), 2304-2312. (2012) Zbl1257.34037MR2911917DOI10.1016/j.nonrwa.2012.01.025
- Turcotte, D. L., 10.1017/CBO9781139174695, Cambridge University Press, Cambridge (1997). (1997) Zbl0785.58005MR1458893DOI10.1017/CBO9781139174695
- Valls, C., 10.1017/S030821050000439X, Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), 1309-1326. (2005) Zbl1098.34028MR2191901DOI10.1017/S030821050000439X
- Balasubramaniam, V. Vembarasan P., 10.1007/s11071-013-0946-0, Nonlinear Dyn. 74 (2013), 31-44. (2013) Zbl1281.34097MR3105173DOI10.1007/s11071-013-0946-0
- Vincent, U. E., 10.1016/j.physleta.2005.06.003, Phys. Lett., A 343 (2005), 133-138. (2005) Zbl1194.34091DOI10.1016/j.physleta.2005.06.003
- Wei, Z., Zhang, W., Wang, Z., Yao, M., 10.1142/S0218127415500285, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550028, 11 pages. (2015) Zbl1309.34009MR3316322DOI10.1142/S0218127415500285
- Wei, Z., Zhu, B., Yang, J., Perc, M., Slavinec, M., 10.1016/j.amc.2018.10.090, Appl. Math. Comput. 347 (2019), 265-281. (2019) Zbl1428.34055MR3880151DOI10.1016/j.amc.2018.10.090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.