Hofer–Zehnder capacity of unit disk cotangent bundles and the loop product
We prove a new finiteness result for the Hofer–Zehnder capacity of certain unit disk cotangent bundles. It is proved by a computation of the pair-of-pants product on Floer homology of cotangent bundles, combined with the theory of spectral invariants. The computation of the pair-of-pants product is reduced to a simple key computation of the Chas–Sullivan loop product.