Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
Tatiana Danielsson; Pernilla Johnsen
Mathematica Bohemica (2021)
- Volume: 146, Issue: 4, page 483-511
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDanielsson, Tatiana, and Johnsen, Pernilla. "Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales." Mathematica Bohemica 146.4 (2021): 483-511. <http://eudml.org/doc/297605>.
@article{Danielsson2021,
abstract = {In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^\{2\}(0,T;H_\{0\}^\{1\}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^\{p\}\partial _\{t\}u_\{\varepsilon \}(x,t) -\nabla \cdot ( a( x\varepsilon ^\{-1\} ,x\varepsilon ^\{-2\},t\varepsilon ^\{-q\},t\varepsilon ^\{-r\}) \nabla u_\{\varepsilon \}(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.},
author = {Danielsson, Tatiana, Johnsen, Pernilla},
journal = {Mathematica Bohemica},
keywords = {homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence},
language = {eng},
number = {4},
pages = {483-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
url = {http://eudml.org/doc/297605},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Danielsson, Tatiana
AU - Johnsen, Pernilla
TI - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 483
EP - 511
AB - In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
LA - eng
KW - homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
UR - http://eudml.org/doc/297605
ER -
References
top- Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
- Allaire, G., Piatnitski, A., 10.1007/s11565-010-0095-z, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. (2010) Zbl1205.35019MR2646529DOI10.1007/s11565-010-0095-z
- Bensoussan, A., Lions, J.-L., Papanicolaou, G., 10.1016/s0168-2024(08)x7015-8, Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). (1978) Zbl0404.35001MR0503330DOI10.1016/s0168-2024(08)x7015-8
- Danielsson, T., Johnsen, P., Homogenization of the heat equation with a vanishing volumetric heat capacity, Available at https://arxiv.org/abs/1809.11019 (2018), 14 pages. (2018)
- Danielsson, T., Johnsen, P., 10.1007/978-3-030-27550-1_43, Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. (2019) DOI10.1007/978-3-030-27550-1_43
- Douanla, H., Woukeng, J. L., Homogenization of reaction-diffusion equations in fractured porous media, Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. (2015) Zbl1336.35046MR3414107
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, 10.1155/2012/643458, J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. (2012) Zbl1242.35030MR2875184DOI10.1155/2012/643458
- Flodén, L., Holmbom, A., Olsson, M., Persson, J., 10.1016/j.aml.2010.05.005, Appl. Math. Lett. 23 (2010), 1170-1173. (2010) Zbl1198.35023MR2665589DOI10.1016/j.aml.2010.05.005
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2013/329704, Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. (2013) Zbl1293.35027MR3111807DOI10.1155/2013/329704
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2014/101685, J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. (2014) Zbl1406.35140MR3176810DOI10.1155/2014/101685
- Holmbom, A., 10.1023/A:1023049608047, Appl. Math., Praha 42 (1997), 321-343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- Johnsen, P., Lobkova, T., 10.21136/AM.2018.0350-17, Appl. Math., Praha 63 (2018), 503-521. (2018) Zbl06986923MR3870146DOI10.21136/AM.2018.0350-17
- Lobkova, T., 10.1007/s10255-019-0810-1, Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. (2019) Zbl1416.35032MR3950176DOI10.1007/s10255-019-0810-1
- Lukkassen, D., Nguetseng, G., Wall, P., Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. (2002) Zbl1061.35015MR1912819
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Nguetseng, G., 10.1137/0521078, SIAM J. Math. Anal. 21 (1990), 1394-1414. (1990) Zbl0723.73011MR1075584DOI10.1137/0521078
- Nguetseng, G., Woukeng, J. L., 10.1016/j.na.2005.12.035, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. (2007) Zbl1116.35011MR2288445DOI10.1016/j.na.2005.12.035
- Persson, J., 10.1007/s10492-012-0013-z, Appl. Math., Praha 57 (2012), 191-214. (2012) Zbl1265.35018MR2984600DOI10.1007/s10492-012-0013-z
- Persson, J., Selected Topics in Homogenization: Doctoral Thesis, Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012). (2012)
- Svanstedt, N., Woukeng, J. L., 10.1080/00036811.2012.678334, Appl. Anal. 92 (2013), 1357-1378. (2013) Zbl1271.35006MR3169106DOI10.1080/00036811.2012.678334
- Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.