Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales

Tatiana Danielsson; Pernilla Johnsen

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 483-511
  • ISSN: 0862-7959

Abstract

top
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in L 2 ( 0 , T ; H 0 1 ( Ω ) ) , fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation ε p t u ε ( x , t ) - · ( a ( x ε - 1 , x ε - 2 , t ε - q , t ε - r ) u ε ( x , t ) ) = f ( x , t ) , where 0 < p < q < r . The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by p , compared to the standard matching that gives rise to local parabolic problems.

How to cite

top

Danielsson, Tatiana, and Johnsen, Pernilla. "Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales." Mathematica Bohemica 146.4 (2021): 483-511. <http://eudml.org/doc/297605>.

@article{Danielsson2021,
abstract = {In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^\{2\}(0,T;H_\{0\}^\{1\}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^\{p\}\partial _\{t\}u_\{\varepsilon \}(x,t) -\nabla \cdot ( a( x\varepsilon ^\{-1\} ,x\varepsilon ^\{-2\},t\varepsilon ^\{-q\},t\varepsilon ^\{-r\}) \nabla u_\{\varepsilon \}(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.},
author = {Danielsson, Tatiana, Johnsen, Pernilla},
journal = {Mathematica Bohemica},
keywords = {homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence},
language = {eng},
number = {4},
pages = {483-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
url = {http://eudml.org/doc/297605},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Danielsson, Tatiana
AU - Johnsen, Pernilla
TI - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 483
EP - 511
AB - In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
LA - eng
KW - homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
UR - http://eudml.org/doc/297605
ER -

References

top
  1. Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
  2. Allaire, G., Piatnitski, A., 10.1007/s11565-010-0095-z, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. (2010) Zbl1205.35019MR2646529DOI10.1007/s11565-010-0095-z
  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G., 10.1016/s0168-2024(08)x7015-8, Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). (1978) Zbl0404.35001MR0503330DOI10.1016/s0168-2024(08)x7015-8
  4. Danielsson, T., Johnsen, P., Homogenization of the heat equation with a vanishing volumetric heat capacity, Available at https://arxiv.org/abs/1809.11019 (2018), 14 pages. (2018) 
  5. Danielsson, T., Johnsen, P., 10.1007/978-3-030-27550-1_43, Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. (2019) DOI10.1007/978-3-030-27550-1_43
  6. Douanla, H., Woukeng, J. L., Homogenization of reaction-diffusion equations in fractured porous media, Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. (2015) Zbl1336.35046MR3414107
  7. Flodén, L., Holmbom, A., Lindberg, M. Olsson, 10.1155/2012/643458, J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. (2012) Zbl1242.35030MR2875184DOI10.1155/2012/643458
  8. Flodén, L., Holmbom, A., Olsson, M., Persson, J., 10.1016/j.aml.2010.05.005, Appl. Math. Lett. 23 (2010), 1170-1173. (2010) Zbl1198.35023MR2665589DOI10.1016/j.aml.2010.05.005
  9. Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2013/329704, Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. (2013) Zbl1293.35027MR3111807DOI10.1155/2013/329704
  10. Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2014/101685, J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. (2014) Zbl1406.35140MR3176810DOI10.1155/2014/101685
  11. Holmbom, A., 10.1023/A:1023049608047, Appl. Math., Praha 42 (1997), 321-343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
  12. Johnsen, P., Lobkova, T., 10.21136/AM.2018.0350-17, Appl. Math., Praha 63 (2018), 503-521. (2018) Zbl06986923MR3870146DOI10.21136/AM.2018.0350-17
  13. Lobkova, T., 10.1007/s10255-019-0810-1, Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. (2019) Zbl1416.35032MR3950176DOI10.1007/s10255-019-0810-1
  14. Lukkassen, D., Nguetseng, G., Wall, P., Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. (2002) Zbl1061.35015MR1912819
  15. Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
  16. Nguetseng, G., 10.1137/0521078, SIAM J. Math. Anal. 21 (1990), 1394-1414. (1990) Zbl0723.73011MR1075584DOI10.1137/0521078
  17. Nguetseng, G., Woukeng, J. L., 10.1016/j.na.2005.12.035, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. (2007) Zbl1116.35011MR2288445DOI10.1016/j.na.2005.12.035
  18. Persson, J., 10.1007/s10492-012-0013-z, Appl. Math., Praha 57 (2012), 191-214. (2012) Zbl1265.35018MR2984600DOI10.1007/s10492-012-0013-z
  19. Persson, J., Selected Topics in Homogenization: Doctoral Thesis, Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012). (2012) 
  20. Svanstedt, N., Woukeng, J. L., 10.1080/00036811.2012.678334, Appl. Anal. 92 (2013), 1357-1378. (2013) Zbl1271.35006MR3169106DOI10.1080/00036811.2012.678334
  21. Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.