Homogenization of monotone parabolic problems with several temporal scales
Applications of Mathematics (2012)
- Volume: 57, Issue: 3, page 191-214
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topPersson, Jens. "Homogenization of monotone parabolic problems with several temporal scales." Applications of Mathematics 57.3 (2012): 191-214. <http://eudml.org/doc/246651>.
@article{Persson2012,
abstract = {In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the ``rapid'' self-similar case), respectively.},
author = {Persson, Jens},
journal = {Applications of Mathematics},
keywords = {homogenization; $H$-convergence; multiscale convergence; parabolic; monotone; parabolic problem; homogenization; -convergence; multiscale convergence; parabolic problem},
language = {eng},
number = {3},
pages = {191-214},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of monotone parabolic problems with several temporal scales},
url = {http://eudml.org/doc/246651},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Persson, Jens
TI - Homogenization of monotone parabolic problems with several temporal scales
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 191
EP - 214
AB - In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the ``rapid'' self-similar case), respectively.
LA - eng
KW - homogenization; $H$-convergence; multiscale convergence; parabolic; monotone; parabolic problem; homogenization; -convergence; multiscale convergence; parabolic problem
UR - http://eudml.org/doc/246651
ER -
References
top- Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
- Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5, North-Holland Publishing Amsterdam-New York-Oxford (1978). (1978) MR0503330
- Evans, L. C., 10.1017/S0308210500018631, Proc. R. Soc. Edinb., Sect. A 111 (1989), 359-375. (1989) Zbl0679.35001MR1007533DOI10.1017/S0308210500018631
- Flodén, L., Olsson, M., Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q. 14 (2006), 149-183. (2006) Zbl1142.35331MR2302654
- Flodén, L., Olsson, M., 10.1007/s10492-007-0025-2, Appl. Math. 52 (2007), 431-446. (2007) Zbl1164.35315MR2342599DOI10.1007/s10492-007-0025-2
- Flodén, L., Holmbom, A., Olsson, M., Svanstedt, N., 10.1007/s11565-007-0014-0, Ann. Univ. Ferrara, Sez. VII Sci. Mat. 53 (2007), 217-232. (2007) Zbl1180.35076MR2358224DOI10.1007/s11565-007-0014-0
- Holmbom, A., Some modes of convergence and their application to homogenization and optimal composites design, Doctoral thesis 1996:208 D Department of Mathematics, Luleå University Luleå (1996). (1996)
- Holmbom, A., 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321-343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- Holmbom, A., Silfver, J., On the convergence of some sequences of oscillating functionals, WSEAS Trans. Math. 5 (2006), 951-956 2241788. (2006) MR2241788
- Holmbom, A., Svanstedt, N., Wellander, N., 10.1007/s10492-005-0009-z, Appl. Math. 50 (2005), 131-151. (2005) Zbl1099.35011MR2125155DOI10.1007/s10492-005-0009-z
- Kun'ch, R. N., Pankov, A. A., G-convergence of the monotone parabolic operators, Dokl. Akad. Nauk Ukr. SSR, Ser. A (1986), 8-10 Russian. (1986) Zbl0621.35005MR0897902
- Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P., 10.1142/S0252959901000024, Chin. Ann. Math., Ser. B 22 (2001), 1-12. (2001) Zbl0979.35047MR1823125DOI10.1142/S0252959901000024
- Mascarenhas, M. L., Toader, A.-M., 10.1081/NFA-100103791, Numer. Funct. Anal. Optimization 22 (2001), 127-158. (2001) Zbl0995.49013MR1841866DOI10.1081/NFA-100103791
- Murat, F., H-convergence, Séminaire d'analyse fonctionelle et numérique de l'Université d'Alger (1978). (1978)
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Nguetseng, G., 10.4171/ZAA/1133, Z. Anal. Anwend. 22 (2003), 73-107. (2003) Zbl1045.46031MR1962077DOI10.4171/ZAA/1133
- Nguetseng, G., Woukeng, J. L., Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differ. Equ., paper No. 82 (2004), Electronic only. (2004) Zbl1058.35025MR2075421
- Nguetseng, G., Woukeng, J. L., 10.1016/j.na.2005.12.035, Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. (2007) Zbl1116.35011MR2288445DOI10.1016/j.na.2005.12.035
- Persson, J., Homogenisation of monotone parabolic problems with several temporal scales: The detailed arXiv e-print version, arXiv:1003.5523 [math.AP].
- Spagnolo, S., Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore, Ann. Sc. Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 657-699 Italian. (1967) Zbl0153.42103MR0225015
- Svanstedt, N., G-convergence and homogenization of sequences of linear and nonlinear partial differential operators, Doctoral thesis 1992:105 D Department of Mathematics, Luleå University Luleå (1992). (1992)
- Tartar, L., Cours peccot, Collège de France (1977), unpublished, partially written in []. (1977)
- Tartar, L., Quelques remarques sur l'homogénéisation, In: Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 M. Fujita Society for the Promotion of Science (1978), 468-482. (1978)
- Woukeng, J. L., 10.1007/s10231-009-0112-y, Ann. Mat. Pura Appl. 189 (2010), 357-379. (2010) Zbl1213.35067MR2657414DOI10.1007/s10231-009-0112-y
Citations in EuDML Documents
top- Pernilla Johnsen, Tatiana Lobkova, Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales
- Tatiana Danielsson, Pernilla Johnsen, Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
- Tatiana Danielsson, Liselott Flodén, Pernilla Johnsen, Marianne Olsson Lindberg, Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.