Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
Tatiana Danielsson; Liselott Flodén; Pernilla Johnsen; Marianne Olsson Lindberg
Applications of Mathematics (2024)
- Issue: 1, page 1-24
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDanielsson, Tatiana, et al. "Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales." Applications of Mathematics (2024): 1-24. <http://eudml.org/doc/299205>.
@article{Danielsson2024,
abstract = {We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter $\varepsilon $. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.},
author = {Danielsson, Tatiana, Flodén, Liselott, Johnsen, Pernilla, Olsson Lindberg, Marianne},
journal = {Applications of Mathematics},
keywords = {homogenization; parabolic; monotone; two-scale convergence; multiscale convergence; very weak multiscale convergence},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales},
url = {http://eudml.org/doc/299205},
year = {2024},
}
TY - JOUR
AU - Danielsson, Tatiana
AU - Flodén, Liselott
AU - Johnsen, Pernilla
AU - Olsson Lindberg, Marianne
TI - Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 1
EP - 24
AB - We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter $\varepsilon $. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.
LA - eng
KW - homogenization; parabolic; monotone; two-scale convergence; multiscale convergence; very weak multiscale convergence
UR - http://eudml.org/doc/299205
ER -
References
top- Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Allaire, G., Briane, M., 10.1017/S0308210500022757, Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. (1996) Zbl0866.35017MR1386865DOI10.1017/S0308210500022757
- Amar, M., Andreucci, D., Bellaveglia, D., 10.4171/RLM/781, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 28 (2017), 663-700. (2017) Zbl1383.35015MR3729583DOI10.4171/RLM/781
- Amar, M., Andreucci, D., Gianni, R., Timofte, C., 10.1007/s00030-019-0592-4, NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 52, 28 pages. (2019) Zbl1435.35035MR4029530DOI10.1007/s00030-019-0592-4
- Bensoussan, A., Lions, J.-L., Papanicoloau, G., 10.1016/s0168-2024(08)x7015-8, Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). (1978) Zbl0404.35001MR0503330DOI10.1016/s0168-2024(08)x7015-8
- Cioranescu, D., Donato, P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, New York (1999). (1999) Zbl0939.35001MR1765047
- Danielsson, T., Johnsen, P., 10.21136/MB.2021.0087-19, Math. Bohem. 146 (2021), 483-511. (2021) Zbl1499.35049MR4336552DOI10.21136/MB.2021.0087-19
- Evans, L. C., 10.1017/S0308210500018631, Proc. R. Soc. Edinb., ASect. A 111 (1989), 359-375. (1989) Zbl0679.35001MR1007533DOI10.1017/S0308210500018631
- Evans, L. C., 10.1017/S0308210500032121, Proc. R. Soc. Edinb., Sect. A 120 (1992), 245-265. (1992) Zbl0796.35011MR1159184DOI10.1017/S0308210500032121
- Flodén, L., Holmbom, A., Olsson, M., Persson, J., 10.1016/j.aml.2010.05.005, Appl. Math. Lett. 23 (2010), 1170-1173. (2010) Zbl1198.35023MR2665589DOI10.1016/j.aml.2010.05.005
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.4310/PAMQ.2013.v9.n3.a4, Pure Appl. Math. Q. 9 (2013), 461-486. (2013) Zbl1288.35041MR3138471DOI10.4310/PAMQ.2013.v9.n3.a4
- Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J., 10.1155/2014/101685, J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. (2014) Zbl1406.35140MR3176810DOI10.1155/2014/101685
- Flodén, L., Olsson, M., Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q. 14 (2006), 149-183. (2006) Zbl1142.35331MR2302654
- Flodén, L., Olsson, M., 10.1007/s10492-007-0025-2, Appl. Math., Praha 52 (2007), 431-446. (2007) Zbl1164.35315MR2342599DOI10.1007/s10492-007-0025-2
- Holmbom, A., 10.1023/A:1023049608047, Appl. Math., Praha 42 (1997), 321-343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis 3. Noordhoff, Leyden (1977). (1977) Zbl0364.46022MR0482102
- Lukkassen, D., Nguetseng, G., Wall, P., Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), 35-86. (2002) Zbl1061.35015MR1912819
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Nguetseng, G., Woukeng, J. L., Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differ. Equ. 2004 (2004), Article ID 82, 23 pages. (2004) Zbl1058.35025MR2075421
- Nguetseng, G., Woukeng, J. L., 10.1016/j.na.2005.12.035, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. (2007) Zbl1116.35011MR2288445DOI10.1016/j.na.2005.12.035
- Persson, J., 10.1007/s10492-012-0013-z, Appl. Math., Praha 57 (2012), 191-214. (2012) Zbl1265.35018MR2984600DOI10.1007/s10492-012-0013-z
- Persson, J., Selected Topics in Homogenization: Doctoral Thesis, Mid Sweden University, Østersund (2012). (2012)
- Svanstedt, N., 10.1016/S0362-546X(97)00532-4, Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-843. (1999) Zbl0933.35020MR1682689DOI10.1016/S0362-546X(97)00532-4
- Svanstedt, N., Wellander, N., Wyller, J., 10.1002/(SICI)1098-2426(199607)12:4<423::AID-NUM2>3.0.CO;2-O, Numer. Methods Partial Differ. Equations 12 (1996), 423-440. (1996) Zbl0859.65105MR1396465DOI10.1002/(SICI)1098-2426(199607)12:4<423::AID-NUM2>3.0.CO;2-O
- Svanstedt, N., Woukeng, J. L., 10.1080/00036811.2012.678334, Appl. Anal. 92 (2013), 1357-1378. (2013) Zbl1271.35006MR3169106DOI10.1080/00036811.2012.678334
- Woukeng, J. L., 10.1007/s10231-009-0112-y, Ann. Mat. Pura Appl. (4) 189 (2010), 357-379. (2010) Zbl1213.35067MR2657414DOI10.1007/s10231-009-0112-y
- Woukeng, J. L., 10.3934/cpaa.2010.9.1753, Commun. Pure Appl. Anal. 9 (2010), 1753-1789. (2010) Zbl1213.35068MR2684060DOI10.3934/cpaa.2010.9.1753
- Zeidler, E., 10.1007/978-1-4612-0981-2, Springer, New York (1990). (1990) Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0981-2
- Zhikov, V. V., 10.1070/SM2000v191n07ABEH000491, Sb. Math. 191 (2000), 973-1014. (2000) Zbl0969.35048MR1809928DOI10.1070/SM2000v191n07ABEH000491
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.