Hardy and Rellich type inequalities with remainders
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 87-110
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNasibullin, Ramil. "Hardy and Rellich type inequalities with remainders." Czechoslovak Mathematical Journal 72.1 (2022): 87-110. <http://eudml.org/doc/297621>.
@article{Nasibullin2022,
abstract = {Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.},
author = {Nasibullin, Ramil},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {1},
pages = {87-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hardy and Rellich type inequalities with remainders},
url = {http://eudml.org/doc/297621},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Nasibullin, Ramil
TI - Hardy and Rellich type inequalities with remainders
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 87
EP - 110
AB - Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.
LA - eng
UR - http://eudml.org/doc/297621
ER -
References
top- Avkhadiev, F. G., Hardy type inequalities in higher dimensions with explicit estimate of constants, Lobachevskii J. Math. 21 (2006), 3-31. (2006) Zbl1120.26008MR2220697
- Avkhadiev, F. G., 10.1134/S008154380604002X, Proc. Steklov Inst. Math. 255 (2006), 2-12. (2006) Zbl1351.42024MR2301606DOI10.1134/S008154380604002X
- Avkhadiev, F. G., 10.1070/IM2014v078n05ABEH002710, Izv. Math. 78 (2014), 855-876. (2014) Zbl1315.26012MR3308642DOI10.1070/IM2014v078n05ABEH002710
- Avkhadiev, F. G., 10.1070/SM2015v206n12ABEH004508, Sb. Math. 206 (2015), 1657-1681. (2015) Zbl1359.30004MR3438572DOI10.1070/SM2015v206n12ABEH004508
- Avkhadiev, F. G., 10.1016/j.jmaa.2016.05.004, J. Math. Anal. Appl. 442 (2016), 469-484. (2016) Zbl1342.26046MR3504010DOI10.1016/j.jmaa.2016.05.004
- Avkhadiev, F. G., 10.1070/SM8739, Sb. Math. 209 (2018), 292-319. (2018) Zbl1395.35003MR3769213DOI10.1070/SM8739
- Avkhadiev, F. G., 10.1090/spmj/1536, St. Petersbg. Math. J. 30 (2019), 161-179. (2019) Zbl1408.26017MR3790730DOI10.1090/spmj/1536
- Avkhadiev, F. G., Nasibullin, R. G., 10.1134/S0037446614020013, Sib. Math. J. 55 (2014), 191-200. (2014) Zbl1315.26016MR3237329DOI10.1134/S0037446614020013
- Avkhadiev, F. G., Shafigullin, I. K., 10.3103/S1066369X14020091, Russ. Math. 58 (2014), 58-61. (2014) Zbl1317.46020MR3254462DOI10.3103/S1066369X14020091
- Avkhadiev, F. G., Wirths, K.-J., 10.1002/zamm.200710342, ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. (2007) Zbl1145.26005MR2354734DOI10.1002/zamm.200710342
- Avkhadiev, F. G., Wirths, K.-J., 10.36045/bbms/1320763133, Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. (2011) Zbl1237.26014MR2907615DOI10.36045/bbms/1320763133
- Balinsky, A. A., Evans, W. D., Lewis, R. T., 10.1007/978-3-319-22870-9, Universitext. Springer, Cham (2015). (2015) Zbl1332.26005MR3408787DOI10.1007/978-3-319-22870-9
- Barbatis, G., 10.1512/iumj.2006.55.2752, Indiana Univ. Math. J. 55 (2006), 1401-1422. (2006) Zbl1225.31006MR2269418DOI10.1512/iumj.2006.55.2752
- Brezis, H., Marcus, M., Hardy's inequality revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. (1997) Zbl1011.46027MR1655516
- Davies, E. B., 10.1017/CBO9780511623721, Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). (1995) Zbl0893.47004MR1349825DOI10.1017/CBO9780511623721
- Davies, E. B., 10.1093/qmath/46.4.417, Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. (1995) Zbl0857.26005MR1366614DOI10.1093/qmath/46.4.417
- Evans, W. D., Lewis, R. T., 10.7153/jmi-01-40, J. Math. Inequal. 1 (2007), 473-490. (2007) Zbl1220.47024MR2408402DOI10.7153/jmi-01-40
- Filippas, S., Maz'ya, V., Tertikas, A., 10.1007/s00526-005-0353-6, Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. (2006) Zbl1121.26014MR2214621DOI10.1007/s00526-005-0353-6
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0944909
- Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., 10.1006/jfan.2001.3859, J. Funct. Anal. 189 (2002), 539-548. (2002) Zbl1012.26011MR1892180DOI10.1006/jfan.2001.3859
- Makarov, R. V., Nasibullin, R. G., 10.1016/j.indag.2020.06.004, Indag. Math., New Ser. 31 (2020), 632-649. (2020) Zbl1452.26017MR4126759DOI10.1016/j.indag.2020.06.004
- Marcus, M., Mizel, V. J., Pinchover, Y., 10.1090/S0002-9947-98-02122-9, Trans. Am. Math. Soc. 350 (1998), 3237-3255. (1998) Zbl0917.26016MR1458330DOI10.1090/S0002-9947-98-02122-9
- Matskewich, T., Sobolevskii, P. E., 10.1016/S0362-546X(96)00004-1, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. (1997) Zbl0876.46025MR1431208DOI10.1016/S0362-546X(96)00004-1
- Maz'ya, V. G., 10.1007/978-3-662-09922-3, Springer Series in Soviet Mathematics. Springer, Berlin (1985). (1985) Zbl0692.46023MR0817985DOI10.1007/978-3-662-09922-3
- Nasibullin, R. G., 10.1134/S1995080216030185, Lobachevskii J. Math. 37 (2016), 274-283. (2016) Zbl1350.26036MR3512705DOI10.1134/S1995080216030185
- Nasibullin, R. G., 10.13108/2017-9-1-89, Ufa Math. J. 9 (2017), 89-97. (2017) MR3646148DOI10.13108/2017-9-1-89
- Nasibullin, R. G., 10.1515/ms-2017-0268, Math. Slovaca 69 (2019), 785-800. (2019) Zbl07289558MR3985017DOI10.1515/ms-2017-0268
- Nasibullin, R. G., 10.33048/semi.2019.16.027, Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. (2019) Zbl1411.26021MR3938782DOI10.33048/semi.2019.16.027
- Nasibullin, R. G., 10.1134/S1995080219090166, Lobachevskii J. Math. 40 (2019), 1383-1396. (2019) Zbl1439.26046MR4021527DOI10.1134/S1995080219090166
- Nasibullin, R. G., Tukhvatullina, A. M., 10.13108/2013-5-2-43, Ufa Math. J. 5 (2013), 43-55. (2013) MR3430775DOI10.13108/2013-5-2-43
- Owen, M. P., 10.1017/S0308210500013160, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. (1999) Zbl0935.46032MR1718522DOI10.1017/S0308210500013160
- Shum, D. T., 10.1090/S0002-9947-1975-0357715-3, Trans. Am. Math. Soc. 204 (1975), 299-341. (1975) Zbl0302.26010MR0357715DOI10.1090/S0002-9947-1975-0357715-3
- Tidblom, J., 10.1090/S0002-9939-04-07526-4, Proc. Am. Math. Soc. 132 (2004), 2265-2271. (2004) Zbl1062.26010MR2052402DOI10.1090/S0002-9939-04-07526-4
- Tukhvatullina, A. M., Hardy type inequalities for a special family of non-convex domains, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. (2011) Zbl1259.26032MR3151535
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.