Hardy and Rellich type inequalities with remainders

Ramil Nasibullin

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 87-110
  • ISSN: 0011-4642

Abstract

top
Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.

How to cite

top

Nasibullin, Ramil. "Hardy and Rellich type inequalities with remainders." Czechoslovak Mathematical Journal 72.1 (2022): 87-110. <http://eudml.org/doc/297621>.

@article{Nasibullin2022,
abstract = {Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.},
author = {Nasibullin, Ramil},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {1},
pages = {87-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hardy and Rellich type inequalities with remainders},
url = {http://eudml.org/doc/297621},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Nasibullin, Ramil
TI - Hardy and Rellich type inequalities with remainders
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 87
EP - 110
AB - Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.
LA - eng
UR - http://eudml.org/doc/297621
ER -

References

top
  1. Avkhadiev, F. G., Hardy type inequalities in higher dimensions with explicit estimate of constants, Lobachevskii J. Math. 21 (2006), 3-31. (2006) Zbl1120.26008MR2220697
  2. Avkhadiev, F. G., 10.1134/S008154380604002X, Proc. Steklov Inst. Math. 255 (2006), 2-12. (2006) Zbl1351.42024MR2301606DOI10.1134/S008154380604002X
  3. Avkhadiev, F. G., 10.1070/IM2014v078n05ABEH002710, Izv. Math. 78 (2014), 855-876. (2014) Zbl1315.26012MR3308642DOI10.1070/IM2014v078n05ABEH002710
  4. Avkhadiev, F. G., 10.1070/SM2015v206n12ABEH004508, Sb. Math. 206 (2015), 1657-1681. (2015) Zbl1359.30004MR3438572DOI10.1070/SM2015v206n12ABEH004508
  5. Avkhadiev, F. G., 10.1016/j.jmaa.2016.05.004, J. Math. Anal. Appl. 442 (2016), 469-484. (2016) Zbl1342.26046MR3504010DOI10.1016/j.jmaa.2016.05.004
  6. Avkhadiev, F. G., 10.1070/SM8739, Sb. Math. 209 (2018), 292-319. (2018) Zbl1395.35003MR3769213DOI10.1070/SM8739
  7. Avkhadiev, F. G., 10.1090/spmj/1536, St. Petersbg. Math. J. 30 (2019), 161-179. (2019) Zbl1408.26017MR3790730DOI10.1090/spmj/1536
  8. Avkhadiev, F. G., Nasibullin, R. G., 10.1134/S0037446614020013, Sib. Math. J. 55 (2014), 191-200. (2014) Zbl1315.26016MR3237329DOI10.1134/S0037446614020013
  9. Avkhadiev, F. G., Shafigullin, I. K., 10.3103/S1066369X14020091, Russ. Math. 58 (2014), 58-61. (2014) Zbl1317.46020MR3254462DOI10.3103/S1066369X14020091
  10. Avkhadiev, F. G., Wirths, K.-J., 10.1002/zamm.200710342, ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. (2007) Zbl1145.26005MR2354734DOI10.1002/zamm.200710342
  11. Avkhadiev, F. G., Wirths, K.-J., 10.36045/bbms/1320763133, Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. (2011) Zbl1237.26014MR2907615DOI10.36045/bbms/1320763133
  12. Balinsky, A. A., Evans, W. D., Lewis, R. T., 10.1007/978-3-319-22870-9, Universitext. Springer, Cham (2015). (2015) Zbl1332.26005MR3408787DOI10.1007/978-3-319-22870-9
  13. Barbatis, G., 10.1512/iumj.2006.55.2752, Indiana Univ. Math. J. 55 (2006), 1401-1422. (2006) Zbl1225.31006MR2269418DOI10.1512/iumj.2006.55.2752
  14. Brezis, H., Marcus, M., Hardy's inequality revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. (1997) Zbl1011.46027MR1655516
  15. Davies, E. B., 10.1017/CBO9780511623721, Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). (1995) Zbl0893.47004MR1349825DOI10.1017/CBO9780511623721
  16. Davies, E. B., 10.1093/qmath/46.4.417, Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. (1995) Zbl0857.26005MR1366614DOI10.1093/qmath/46.4.417
  17. Evans, W. D., Lewis, R. T., 10.7153/jmi-01-40, J. Math. Inequal. 1 (2007), 473-490. (2007) Zbl1220.47024MR2408402DOI10.7153/jmi-01-40
  18. Filippas, S., Maz'ya, V., Tertikas, A., 10.1007/s00526-005-0353-6, Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. (2006) Zbl1121.26014MR2214621DOI10.1007/s00526-005-0353-6
  19. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0944909
  20. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., 10.1006/jfan.2001.3859, J. Funct. Anal. 189 (2002), 539-548. (2002) Zbl1012.26011MR1892180DOI10.1006/jfan.2001.3859
  21. Makarov, R. V., Nasibullin, R. G., 10.1016/j.indag.2020.06.004, Indag. Math., New Ser. 31 (2020), 632-649. (2020) Zbl1452.26017MR4126759DOI10.1016/j.indag.2020.06.004
  22. Marcus, M., Mizel, V. J., Pinchover, Y., 10.1090/S0002-9947-98-02122-9, Trans. Am. Math. Soc. 350 (1998), 3237-3255. (1998) Zbl0917.26016MR1458330DOI10.1090/S0002-9947-98-02122-9
  23. Matskewich, T., Sobolevskii, P. E., 10.1016/S0362-546X(96)00004-1, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. (1997) Zbl0876.46025MR1431208DOI10.1016/S0362-546X(96)00004-1
  24. Maz'ya, V. G., 10.1007/978-3-662-09922-3, Springer Series in Soviet Mathematics. Springer, Berlin (1985). (1985) Zbl0692.46023MR0817985DOI10.1007/978-3-662-09922-3
  25. Nasibullin, R. G., 10.1134/S1995080216030185, Lobachevskii J. Math. 37 (2016), 274-283. (2016) Zbl1350.26036MR3512705DOI10.1134/S1995080216030185
  26. Nasibullin, R. G., 10.13108/2017-9-1-89, Ufa Math. J. 9 (2017), 89-97. (2017) MR3646148DOI10.13108/2017-9-1-89
  27. Nasibullin, R. G., 10.1515/ms-2017-0268, Math. Slovaca 69 (2019), 785-800. (2019) Zbl07289558MR3985017DOI10.1515/ms-2017-0268
  28. Nasibullin, R. G., 10.33048/semi.2019.16.027, Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. (2019) Zbl1411.26021MR3938782DOI10.33048/semi.2019.16.027
  29. Nasibullin, R. G., 10.1134/S1995080219090166, Lobachevskii J. Math. 40 (2019), 1383-1396. (2019) Zbl1439.26046MR4021527DOI10.1134/S1995080219090166
  30. Nasibullin, R. G., Tukhvatullina, A. M., 10.13108/2013-5-2-43, Ufa Math. J. 5 (2013), 43-55. (2013) MR3430775DOI10.13108/2013-5-2-43
  31. Owen, M. P., 10.1017/S0308210500013160, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. (1999) Zbl0935.46032MR1718522DOI10.1017/S0308210500013160
  32. Shum, D. T., 10.1090/S0002-9947-1975-0357715-3, Trans. Am. Math. Soc. 204 (1975), 299-341. (1975) Zbl0302.26010MR0357715DOI10.1090/S0002-9947-1975-0357715-3
  33. Tidblom, J., 10.1090/S0002-9939-04-07526-4, Proc. Am. Math. Soc. 132 (2004), 2265-2271. (2004) Zbl1062.26010MR2052402DOI10.1090/S0002-9939-04-07526-4
  34. Tukhvatullina, A. M., Hardy type inequalities for a special family of non-convex domains, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. (2011) Zbl1259.26032MR3151535

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.