Extreme points of the Besicovitch--Orlicz space of almost periodic functions equipped with the Luxemburg norm
Slimane Hassaine; Fatiha Boulahia
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 1, page 67-79
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHassaine, Slimane, and Boulahia, Fatiha. "Extreme points of the Besicovitch--Orlicz space of almost periodic functions equipped with the Luxemburg norm." Commentationes Mathematicae Universitatis Carolinae (2021): 67-79. <http://eudml.org/doc/297632>.
@article{Hassaine2021,
abstract = {We investigate which points in the unit sphere of the Besicovitch--Orlicz space of almost periodic functions, equipped with the Luxemburg norm, are extreme points. Sufficient conditions for the strict convexity of this space are also given.},
author = {Hassaine, Slimane, Boulahia, Fatiha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besicovitch--Orlicz space; extreme point; strict convexity; almost periodic function},
language = {eng},
number = {1},
pages = {67-79},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extreme points of the Besicovitch--Orlicz space of almost periodic functions equipped with the Luxemburg norm},
url = {http://eudml.org/doc/297632},
year = {2021},
}
TY - JOUR
AU - Hassaine, Slimane
AU - Boulahia, Fatiha
TI - Extreme points of the Besicovitch--Orlicz space of almost periodic functions equipped with the Luxemburg norm
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 67
EP - 79
AB - We investigate which points in the unit sphere of the Besicovitch--Orlicz space of almost periodic functions, equipped with the Luxemburg norm, are extreme points. Sufficient conditions for the strict convexity of this space are also given.
LA - eng
KW - Besicovitch--Orlicz space; extreme point; strict convexity; almost periodic function
UR - http://eudml.org/doc/297632
ER -
References
top- Bedouhene F., Morsli M., Smaali M., On some equivalent geometric properties in the Besicovitch–Orlicz space of almost periodic functions with Luxemburg norm, Comment. Math. Univ. Carolin. 51 (2010), no. 1, 25–35. MR2666078
- Besicovitch A. S., Almost Periodic Functions, Dover Publications, New York, 1955. Zbl0065.07102MR0068029
- Boulahia F., Morsli M., Uniform non-squareness and property of Besicovitch–Orlicz spaces of almost periodic functions with Orlicz norm, Comment. Math. Univ. Carolin. 51 (2010), no. 3, 417–426. MR2741874
- Chen S., Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204 pages. Zbl1089.46500MR1410390
- Diestel J., 10.1007/BFb0082079, Lecture Notes in Mathematics, 485, Springer, Berlin, 1975. MR0461094DOI10.1007/BFb0082079
- Foralewski P., Hudzik H., Płuciennik R., 10.1016/j.jmaa.2009.07.015, J. Math. Anal. Appl. 361 (2010), no. 2, 506–519. MR2568714DOI10.1016/j.jmaa.2009.07.015
- Hillmann T. R., Besicovitch–Orlicz spaces of almost periodic functions, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, New York, 1986, pages 119–167. MR0856581
- Morsli M., On some convexity properties of the Besicovitch–Orlicz space of almost periodic functions, Comment. Math. (Prace Mat.) 34 (1994), 137–152. MR1325081
- Morsli M., On modular approximation property in the Besicovitch–Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 38 (1997), no. 3, 485–496. MR1485070
- Morsli M., Boulahia F., Uniformly non- Besicovitch–Orlicz space of almost periodic functions, Comment. Math. (Prace Mat.) 45 (2005), no. 1, 25–34. MR2199891
- Morsli M., Bedouhene F., 10.5209/rev_REMA.2003.v16.n2.16812, Rev. Mat. Complut. 16 (2003), no. 2, 399–415. MR2032925DOI10.5209/rev_REMA.2003.v16.n2.16812
- Shang S., Cui Y., Fu Y., Extreme points and rotundity in Musielak–Orlicz–Bochner function spaces endowed with Orlicz norm, Abstr. Appl. Anal. 2010 (2010), Art. ID 914183, 13 pages. MR2720027
- Wisła M., Geometric properties of Orlicz spaces equipped with -Amemiya norms—results and open questions, Comment. Math. 55 (2015), no. 2, 183–209. MR3518965
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.