Almost periodic solutions of nonlinear discrete Volterra equations with unbounded delay.
We investigate which points in the unit sphere of the Besicovitch--Orlicz space of almost periodic functions, equipped with the Luxemburg norm, are extreme points. Sufficient conditions for the strict convexity of this space are also given.
By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed...